Advanced Methods in Natural Language
Processing

Session 9: LLMs Basics

Arnault Gombert
May 2025

Barcelona School of Economics

Introduction

Introduction to Today’s Lecture on LLMs and ChatGPT

Today, we delve into the world of LLMs such as ChatGPT, exploring their
advancements, applications, and the intricacies of prompt engineering,
fine-tuning, and retrieval-augmented generation (RAG).

Session Overview:

= Overview of LLMs: Introducing text-only and multimodal models,
and their evolution since 2022.

= Main Use Cases: Exploring the diverse applications of LLMs in
various domains.

= Prompt Engineering: Understanding the art of effectively
communicating with LLMs to achieve desired outcomes.

» Retrieval-Augmented Generation (RAG): Leveraging external
knowledge bases to enhance LLMs' responses.

= Fine-Tuning Techniques: Techniques to customize LLMs for
specific tasks or datasets. 2

Training of ChatGPT: Process and Innovations

= Foundation Model: ChatGPT builds
upon a large transformer-based language
model, similar to GPT-3, trained on a

diverse range of internet text.

Evolution of Texts LLM
Tie et al. (2025)

Training of ChatGPT: Process and Innovations

= Foundation Model: ChatGPT builds
upon a large transformer-based language
model, similar to GPT-3, trained on a

diverse range of internet text.

= Reinforcement Learning from Human
Feedback (RLHF):

Evolution of Texts LLM
Tie et al. (2025)

Training of ChatGPT: Process and Innovations

= Foundation Model: ChatGPT builds
upon a large transformer-based language
model, similar to GPT-3, trained on a

diverse range of internet text.

= Reinforcement Learning from Human
Feedback (RLHF):

= Supervised Fine-Tuning (SFT): Initial
fine-tuning on a dataset of conversational

prompts and responses.

Evolution of Texts LLM
Tie et al. (2025)

Training of ChatGPT: Process and Innovations

= Foundation Model: ChatGPT builds
upon a large transformer-based language
model, similar to GPT-3, trained on a

diverse range of internet text.

= Reinforcement Learning from Human
Feedback (RLHF):
= Supervised Fine-Tuning (SFT): Initial
fine-tuning on a dataset of conversational

prompts and responses.
= Reward Modeling (RM): Trained a reward
model to predict scores given by human

Evolution of Texts LLM

trainers for model-generated responses.
Tie et al. (2025)

Training of ChatGPT: Process and Innovations

= Foundation Model: ChatGPT builds
upon a large transformer-based language
model, similar to GPT-3, trained on a

diverse range of internet text.

= Reinforcement Learning from Human
Feedback (RLHF):

= Supervised Fine-Tuning (SFT): Initial
fine-tuning on a dataset of conversational

prompts and responses.
= Reward Modeling (RM): Trained a reward
model to predict scores given by human

Evolution of Texts LLM
Tie et al. (2025)

trainers for model-generated responses.
= Proximal Policy Optimization (PPO):
Final fine-tuning phase using the reward
model to guide training toward human
preferences. 3

Supervised Fine-Tuning (SFT) in ChatGPT

= Objective: Refine the foundational
language model towards conversational
understanding and response generation.

Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

™

7
Explain reinforcement
learning toa 6 year old.

i

o

4

We give treats and
punishments to teach...

/

SFT
A
.\..W.
z
BER

Supervised Fine-Tuning Phase

4

Objective: Refine the foundational
language model towards conversational
understanding and response generation.

Process:

Supervised Fine-Tuning (SFT) in ChatGPT

Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

™

7
Explain reinforcement
learning toa 6 year old.

i

o

4

We give treats and
punishments to teach...

/

SFT
A
.\..W.
z
BER

Supervised Fine-Tuning Phase

4

Supervised Fine-Tuning (SFT) in ChatGPT

= Objective: Refine the foundational

Step 1
language model towards conversational Collect demonstration data

) . and train a supervised policy.
understanding and response generation.

= Process: PR o
e .. sampled from our et
= Utilizes a curated dataset comprising prompt dataset. icaming s &year o,
diverse conversational prompts and I
corresponding human-written responses. Aiskalor @
demonstrates the
desired output z
behavior. prE
SFT
This data is used to ./..)?7{\.
fine-tune GPT-35 s
with supervised V4
learning. @ I:E.,] @

Supervised Fine-Tuning Phase

4

Supervised Fine-Tuning (SFT) in ChatGPT

= Objective: Refine the foundational
language model towards conversational
understanding and response generation.
= Process:

= Utilizes a curated dataset comprising
diverse conversational prompts and
corresponding human-written responses.

= The model is fine-tuned to predict these
responses accurately, aligning its outputs
more closely with human-like
conversational patterns.

Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

™

7
Explain reinforcement
learning toa 6 year old.

i

o

4

We give treats and
punishments to teach...

/

SFT
A
.\..W.
z
BER

Supervised Fine-Tuning Phase

4

Supervised Fine-Tuning (SFT) in ChatGPT

= Objective: Refine the foundational
language model towards conversational
understanding and response generation.
= Process:
= Utilizes a curated dataset comprising
diverse conversational prompts and
corresponding human-written responses.
= The model is fine-tuned to predict these
responses accurately, aligning its outputs
more closely with human-like

conversational patterns.

= Example:

Step 1

Collect demonstration data
and train a supervised policy.

A prompt is
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

™

7
Explain reinforcement
learning toa 6 year old.

i

o

4

We give treats and
punishments to teach...

i

SFT
A
.\..W.
z
BER

Supervised Fine-Tuning Phase

4

Supervised Fine-Tuning (SFT) in ChatGPT

= Objective: Refine the foundational
language model towards conversational
understanding and response generation.
= Process:
= Utilizes a curated dataset comprising
diverse conversational prompts and
corresponding human-written responses.
= The model is fine-tuned to predict these
responses accurately, aligning its outputs
more closely with human-like
conversational patterns.
= Example:

= Prompt: "What's your favorite book and
why?"

Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

™

7
Explain reinforcement
learning toa 6 year old.

i

o

4

We give treats and
punishments to teach...

/

SFT
A
.\..W.
z
BER

Supervised Fine-Tuning Phase

4

Supervised Fine-Tuning (SFT) in ChatGPT

= Objective: Refine the foundational
language model towards conversational
understanding and response generation.
= Process:
= Utilizes a curated dataset comprising
diverse conversational prompts and
corresponding human-written responses.
= The model is fine-tuned to predict these
responses accurately, aligning its outputs
more closely with human-like
conversational patterns.
= Example:
= Prompt: "What's your favorite book and
why?"
= Model learns to generate engaging and
contextually relevant responses.

Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

™

7
Explain reinforcement
learning toa 6 year old.

i

o

4

We give treats and
punishments to teach...

/

SFT
A
.\..W.
z
BER

Supervised Fine-Tuning Phase

4

Reward Modeling (RM) in ChatGPT

= Objective: Create a model to evaluate Step2
Collect comparison data and
and score generated texts based on human trainareward model.

preferences.
A prompt and I
~/
several model Bt
xplain reinforcement
outputs are learning to a 6 year old.
sampled.

A labeler ranks the
outputs from best

to worst. 0-0-0-0
RM
This data is used ./}?.A.
to train our \752{/
reward model.
0-0-0-0

Reward Modeling Phase

Reward Modeling (RM) in ChatGPT

= Objective: Create a model to evaluate Step2
Collect comparison data and
and score generated texts based on human trainareward model.

preferences.
A prompt and I
] : ~/
P rocess . several model Explain reinforcement
outputs are learning to a 6 year old.
sampled.

A labeler ranks the
outputs from best

to worst. 0-0-0-0
RM
This data is used ./}?.A.
to train our \752{/
reward model.
0-0-0-0

Reward Modeling Phase

Reward Modeling (RM) in ChatGPT

= Objective: Create a model to evaluate Step2
Collect comparison data and
and score generated texts based on human trainareward model.

preferences.
. A prompt and I
" P rocess . several model Explain r;'\zzrcemem
. . outputs are learning to a 6 year old.
= Human trainers rate the quality of sampled.

responses generated by the model,
considering factors like relevance,

coherence, and safety.

A labeler ranks the
outputs from best

to worst. 0-0-0-0
RM
This data is used ./}?.A.
to train our \752{/
reward model.
0-0-0-0

Reward Modeling Phase

Reward Modeling (RM) in ChatGPT

= Objective: Create a model to evaluate
and score generated texts based on human
preferences.
= Process:
= Human trainers rate the quality of
responses generated by the model,
considering factors like relevance,
coherence, and safety.
= Use the ratings to train a separate reward
model that learns to predict scores.

Step 2

Collect comparison data and
train a reward model.

A prompt and ’TI
several model Bt =

xplain reinforcement
outputs are learning to a 6 year old.
sampled.

A labeler ranks the
outputs from best

to worst. 0-0-0-0
RM
This data is used ./}?.A.
to train our \752{/
reward model.
0-0-0-0

Reward Modeling Phase

Reward Modeling (RM) in ChatGPT

= Objective: Create a model to evaluate
and score generated texts based on human
preferences.

= Process:

= Human trainers rate the quality of
responses generated by the model,
considering factors like relevance,
coherence, and safety.

= Use the ratings to train a separate reward
model that learns to predict scores.

= Example:

Step 2

Collect comparison data and
train a reward model.

A prompt and ’TI
several model Gt =

xplain reinforcement
outputs are learning to a 6 year old.
sampled.

A labeler ranks the
outputs from best

to worst. 0-0-0-0
RM
This data is used ./}?.A.
to train our \752{/
reward model.
0-0-0-0

Reward Modeling Phase

Reward Modeling (RM) in ChatGPT

= Objective: Create a model to evaluate
and score generated texts based on human
preferences.

= Process:

= Human trainers rate the quality of
responses generated by the model,
considering factors like relevance,
coherence, and safety.

= Use the ratings to train a separate reward
model that learns to predict scores.

= Example:

= Response: "My favorite book is 'To Kill a
Mockingbird’ because it tackles complex
themes with compelling storytelling.”

Step 2

Collect comparison data and
train a reward model.

A prompt and ’TI
several model Gt =

xplain reinforcement
outputs are learning to a 6 year old.
sampled.

A labeler ranks the
outputs from best

to worst. 0-0-0-0
RM

This data is used ./}?.A.

to train our \752{/

reward model.

0-0-0-0

Reward Modeling Phase

Reward Modeling (RM) in ChatGPT

= Objective: Create a model to evaluate
and score generated texts based on human
preferences.
= Process:
= Human trainers rate the quality of
responses generated by the model,
considering factors like relevance,
coherence, and safety.
= Use the ratings to train a separate reward
model that learns to predict scores.
= Example:
= Response: "My favorite book is 'To Kill a
Mockingbird’ because it tackles complex
themes with compelling storytelling.”
= Reward model learns to score such
responses for effectiveness and relevance.

Step 2

Collect comparison data and
train a reward model.

A prompt and ’TI
several model Gt =

xplain reinforcement
outputs are learning to a 6 year old.
sampled.

A labeler ranks the
outputs from best

to worst. 0-0-0-0
RM

This data is used ./}?.A.

to train our \752{/

reward model.

0-0-0-0

Reward Modeling Phase

Proximal Policy Optimization (PPO) in ChatGPT

= Objective: Refine ChatGPT's responses S5

Optimize a policy against the

to align with human preferences. reward model using the PPO
reinforcement learning algorithm.

A new prompt is e
sampled from Wiits aistory
the dataset. about otters.
|
The PPO model is RGA
initialized from the SR =
supervised policy. W

The policy generates
an output.

The reward model

. _9
calculates a reward N
for the output. =Y

The reward is used
to update the r ==
policy using PPO.

PPO Phase

Proximal Policy Optimization (PPO) in ChatGPT

= Objective: Refine ChatGPT's responses S5

Optimize a policy against the

to align with human preferences. reward model using the PPO
reinforcement learning algorithm.

= Process:
A new prompt is e
sampled from Wiits aistory
the dataset. about otters.
The PPO model is RGA
initialized from the SR =
supervised policy. W

The policy generates
an output.

The reward model

. _9
calculates a reward N
for the output. =Y

The reward is used
to update the r ==
policy using PPO.

PPO Phase

Proximal Policy Optimization (PPO) in ChatGPT

= Objective: Refine ChatGPT's responses S5

Optimize a policy against the

to align with human preferences. reward model using the PPO
reinforcement learning algorithm.

= Process:
, L. i i A new prompt is A
= The model’s training is guided by the sampled from Witeastory
the dataset. about otters.
reward model to generate responses that I
are likely to be scored highly. The PG modellis o
initialized from the D -
supervised policy. W
The policy generates oncq uponatime..
an output.
f
The reward model oM
calculates a reward LN
for the output. =Y
|

The reward is used
to update the r ==
policy using PPO.

PPO Phase

Proximal Policy Optimization (PPO) in ChatGPT

= Objective: Refine ChatGPT's responses S5

Optimize a policy against the

to align with human preferences. reward model using the PPO
reinforcement learning algorithm.

= Process:
, L. i i A new prompt is e
= The model’s training is guided by the sampled from Witeastory
the dataset. about otters.
reward model to generate responses that I
are likely to be scored highly. The PPG modellis o
= Iteratively adjusts the model's parameters ~ [aeefonie -
to maximize the expected reward from {
the reward model. The policy generates onco ponatime..
an output.
|
The reward model oM
calculates a reward N
for the output. W
|

The reward is used
to update the r
policy using PPO.

PPO Phase 6

Proximal Policy Optimization (PPO) in ChatGPT

= Objective: Refine ChatGPT's responses S5

Optimize a policy against the

to align with human preferences. reward model using the PPO
reinforcement learning algorithm.

= Process:
, L. i i A new prompt is e
= The model’s training is guided by the sampled from Witeastory
the dataset. about otters.
reward model to generate responses that I
are likely to be scored highly. The PPG modellis }r:;o{
. .) initialized from the I\ -
= lteratively adjusts the model’s parameters ot = ey p e
to maximize the expected reward from {
the reward model. The policy generates onco ponatime..
an output.
= Example: |
The reward model oM
calculates a reward N
for the output. N7
The reward is used *

to update the r ==
policy using PPO.

PPO Phase

Proximal Policy Optimization (PPO) in ChatGPT

= Objective: Refine ChatGPT's responses S5

Optimize a policy against the

to align with human preferences. reward model using the PPO
reinforcement learning algorithm.

= Process:
, L. i i A new prompt is e
= The model’s training is guided by the sampled from Witeastory
the dataset. about otters.
reward model to generate responses that I
are likely to be scored highly. The PPG modellis o
= lteratively adjusts the model's parameters ~ [iaeelonie K
to maximize the expected reward from {
the reward model. The policy generates onco ponatime..
an output.
= Example: |
. The reward model BN
= The model generates a variety of calculates a reward A,
for the output. W
responses to a prompt.
The reward is used *

to update the r ==
policy using PPO.

PPO Phase

Proximal Policy Optimization (PPO) in ChatGPT

= Objective: Refine ChatGPT's responses S5

Optimize a policy against the

to align with human preferences. reward model using the PPO
reinforcement learning algorithm.

= Process:
, L. i i A new prompt is e
= The model’s training is guided by the sampled from Witeastory
the dataset. about otters.
reward model to generate responses that I
are likely to be scored highly. The PPG modellis }r:;o{
. . . e b St
= lteratively adjusts the model's parameters ~ [iaeelonie K
to maximize the expected reward from {
the reward model. The policy generates onco ponatime..
an output.
= Example: |
. The reward model BN
= The model generates a variety of calculates a reward A,
for the output. W
responses to a prompt. |
= |t then estimates the reward for each Iherewardisused
to L{pdatelz the r ==
response and prefers choices that policy using FRO;
maximize this reward, leading to more
PPO Phase

human-aligned responses. 6

Evolution of PPO: Newer Techniques

= Direct Preference Optimization (DPO):
= Directly optimizes for human preferences, avoiding reward model
intermediaries.
= Improves sample efficiency and stability of RL-based fine-tuning.

Evolution of PPO: Newer Techniques

= Direct Preference Optimization (DPO):
= Directly optimizes for human preferences, avoiding reward model
intermediaries.
= Improves sample efficiency and stability of RL-based fine-tuning.
= Simple Preference Optimization (SimPO):

= Focuses on stability and computational efficiency.
= Balances expressiveness and practicality in preference learning.

Evolution of PPO: Newer Techniques

= Direct Preference Optimization (DPO):

= Directly optimizes for human preferences, avoiding reward model

intermediaries.

= Improves sample efficiency and stability of RL-based fine-tuning.
= Simple Preference Optimization (SimPO):

= Focuses on stability and computational efficiency.

= Balances expressiveness and practicality in preference learning.
= Others:

= You have KPO, ORPO, IPO, DOVE, RLAIF, SPIN...
= You can take a look at Argilla's blog posts.

Training of ChatGPT: Process and Innovations

= Differences from Previous Models:

Training of ChatGPT: Process and Innovations

= Differences from Previous Models:

= Interactive Feedback: Incorporation of dialogues and human
interaction nuances.

Training of ChatGPT: Process and Innovations

= Differences from Previous Models:
= Interactive Feedback: Incorporation of dialogues and human
interaction nuances.
= Dynamic Learning: Ability to learn from user interactions and adapt
responses.

Training of ChatGPT: Process and Innovations

= Differences from Previous Models:
= Interactive Feedback: Incorporation of dialogues and human
interaction nuances.
= Dynamic Learning: Ability to learn from user interactions and adapt
responses.
» FEthical and Safety Considerations: Enhanced focus on generating
safe, ethical, and contextually appropriate responses.

Applications & other models

Cursor: Al-Powered Code Editor

= What it is: A code editor with built-in Al

assistance to enhance coding productivity.

J CURSOR

Cursor: Al-Powered Code Editor

= What it is: A code editor with built-in Al
assistance to enhance coding productivity.

= How it works:

J CURSOR

Cursor: Al-Powered Code Editor

= What it is: A code editor with built-in Al
assistance to enhance coding productivity.
= How it works:

= Integrates a powerful LLM for code
completions, refactoring, and natural
language explanations.

J CURSOR

Cursor: Al-Powered Code Editor

= What it is: A code editor with built-in Al
assistance to enhance coding productivity.
= How it works:
= Integrates a powerful LLM for code
completions, refactoring, and natural
language explanations.

= Supports seamless code navigation and
Al-enhanced coding workflows. 1 CURSOR

Cursor: Al-Powered Code Editor

= What it is: A code editor with built-in Al
assistance to enhance coding productivity.
= How it works:
= Integrates a powerful LLM for code
completions, refactoring, and natural
language explanations.
= Supports seamless code navigation and

Al-enhanced coding workflows. 1 CURSOR

= Provides a chat with agent or manual

inputs directly within the editor.

Cursor: Al-Powered Code Editor

= What it is: A code editor with built-in Al
assistance to enhance coding productivity.
= How it works:

= Integrates a powerful LLM for code
completions, refactoring, and natural
language explanations.

= Supports seamless code navigation and
Al-enhanced coding workflows. 1 CURSOR
= Provides a chat with agent or manual

inputs directly within the editor.
= ROLI:

Cursor: Al-Powered Code Editor

= What it is: A code editor with built-in Al
assistance to enhance coding productivity.
= How it works:

= Integrates a powerful LLM for code
completions, refactoring, and natural
language explanations.

= Supports seamless code navigation and
Al-enhanced coding workflows. 1 CURSOR
= Provides a chat with agent or manual

inputs directly within the editor.
= ROLI:

= Speeds up coding tasks with smart

Al-based code generation.

Cursor: Al-Powered Code Editor

= What it is: A code editor with built-in Al
assistance to enhance coding productivity.
= How it works:

= Integrates a powerful LLM for code
completions, refactoring, and natural
language explanations.

= Supports seamless code navigation and
Al-enhanced coding workflows. 1 CURSOR
= Provides a chat with agent or manual

inputs directly within the editor.
= ROLI:

= Speeds up coding tasks with smart

Al-based code generation.
= Enhances the development process
through quick code insights and
debugging support. 9

Llamalndex: Leveraging RAG for Internal Data

= What it is: A system that utilizes
Retrieval-Augmented Generation (RAG)
with LLMs for internal data querying and
analysis.

h Llamalndex

Llamalndex

10

Llamalndex: Leveraging RAG for Internal Data

= What it is: A system that utilizes
Retrieval-Augmented Generation (RAG)
with LLMs for internal data querying and
analysis.

= How it works:

h Llamalndex

Llamalndex

10

Llamalndex: Leveraging RAG for Internal Data

= What it is: A system that utilizes
Retrieval-Augmented Generation (RAG)
with LLMs for internal data querying and
analysis.

= How it works:

= Combines the power of LLMs with a

retrieval system to fetch relevant h Llamalndex
documents. ’

Llamalndex

10

Llamalndex: Leveraging RAG for Internal Data

= What it is: A system that utilizes
Retrieval-Augmented Generation (RAG)
with LLMs for internal data querying and
analysis.

= How it works:

= Combines the power of LLMs with a

retrieval system to fetch relevant h Llamalndex
documents. ’

= Enhances the generation of responses by
conditioning on retrieved documents.

Llamalndex

10

Llamalndex: Leveraging RAG for Internal Data

= What it is: A system that utilizes
Retrieval-Augmented Generation (RAG)
with LLMs for internal data querying and
analysis.

= How it works:

= Combines the power of LLMs with a

retrieval system to fetch relevant h Llamalndex
documents. ’

= Enhances the generation of responses by
conditioning on retrieved documents.

Llamalndex

= Usage:

10

Llamalndex: Leveraging RAG for Internal Data

= What it is: A system that utilizes
Retrieval-Augmented Generation (RAG)
with LLMs for internal data querying and
analysis.

= How it works:

= Combines the power of LLMs with a

retrieval system to fetch relevant h Llamalndex
documents. ’

= Enhances the generation of responses by
conditioning on retrieved documents.

Llamalndex

= Usage:
= Facilitates complex queries on internal
datasets.

10

Llamalndex: Leveraging RAG for Internal Data

= What it is: A system that utilizes
Retrieval-Augmented Generation (RAG)
with LLMs for internal data querying and
analysis.

= How it works:

= Combines the power of LLMs with a
retrieval system to fetch relevant h Llamalndex
documents. ’

= Enhances the generation of responses by

conditioning on retrieved documents.

Llamalndex

= Usage:
= Facilitates complex queries on internal
datasets.
= Provides contextually enriched answers by
combining generative power with specific

. 10
data retrieval.

Vera: Your Trusted Number for Fact-Checking

Functionality:

= Vera is a single, free-to-use app for
verifying facts and combating
misinformation.

11

askvera.org

Vera: Your Trusted Number for Fact-Checking

Functionality:

= Vera is a single, free-to-use app for
verifying facts and combating
misinformation.

= Provides users with quick and reliable

answers to fact-check claims.

11

askvera.org

Vera: Your Trusted Number for Fact-Checking

Functionality:

= Vera is a single, free-to-use app for
verifying facts and combating
misinformation.

= Provides users with quick and reliable

answers to fact-check claims.

11

askvera.org

Vera: Your Trusted Number for Fact-Checking

Functionality:

= Vera is a single, free-to-use app for
verifying facts and combating
misinformation.

= Provides users with quick and reliable
answers to fact-check claims.
Benefits:

= Accessibility: A simple and direct solution
to access fact-checked information.

Vera: askvera.org

11

askvera.org

Vera: Your Trusted Number for Fact-Checking

Functionality:

= Vera is a single, free-to-use app for
verifying facts and combating
misinformation.

= Provides users with quick and reliable
answers to fact-check claims.

Benefits:

= Accessibility: A simple and direct solution
to access fact-checked information.

= Public Trust: Promotes transparency and

Vera: askvera.org

helps build trust in information sources.

11

askvera.org

Vera: Your Trusted Number for Fact-Checking

Functionality:

= Vera is a single, free-to-use app for
verifying facts and combating
misinformation.

= Provides users with quick and reliable
answers to fact-check claims.

Benefits:

‘‘‘‘‘‘‘‘‘

= Accessibility: A simple and direct solution
to access fact-checked information.

7
1
= Public Trust: Promotes transparency and Vera: askvera.org
helps build trust in information sources.

= Countering Misinformation: Acts as a
frontline tool in the fight against
misinformation and polarization. 11

askvera.org

Maximizing LLM Performance

Techniques to Utilize LLMs

= Prompt Engineering: Crafting prompts that guide the LLM to
generate the desired output. Asking the model to act in a specific
way, leveraging pre-trained knowledge to fulfill complex tasks.

= Retrieval-Augmented Generation (RAG): Optimizing the context
by providing the model with external knowledge to know before
generating a response. This method enhances the model's ability to
generate more contextually relevant answers.

= Fine-Tuning: Training the LLM on a specific dataset to optimize its
performance for a particular task. It's about how the model needs to
act, refining its responses based on additional training to align with
the task's requirements.

= Combining Techniques: While each technique has its strengths,
combining prompt engineering, RAG, and fine-tuning can offer a
comprehensive approach to leveraging LLMs. The best direction

depends on the specific use case. 12

Techniques to Utilize LLMs

The optimization flow

All of the above

B Fine-tune model
Add simple retrieval [l

Context
optimization

What the model Prompt engineering Fine-tuning
needs to know M Add few shot

W Prompt

LLM optimization

How the model needs to act

From openAl demo day

13

Prompt Engineering with LLMs

Techniques for Enhanced Interaction:

= LLM-Enhanced Prompts: Utilizing LLMs to refine prompts for
better accuracy and relevance. eg. Liu et al., 2023 - "Dynamic
LLM-Agent Network”

= Few-Shot Learning: Incorporating examples within prompts to
guide LLMs towards desired outputs. Reference: GPT-3, OpenAl.

= Chain of Thoughts: Encouraging LLMs to "think aloud,”
enhancing reasoning for complex queries. eg. Wei et al., 2022 -
"Chain of Thought Prompting Elicits Reasoning in Large Language
Models."

= Schema-Constrained Output: Structuring prompts to yield
outputs in specific formats, like JSON for NER tasks. eg. Shin et
al., 2021 - "Constrained Language Models Yield Few-Shot Semantic

Parsers. 14

Using LLMs for Prompt Optimization

Python Example with OpenAl API:

ode Snippet

from openai import OpenAI

client = OpenAI(api_key=’your-api-key-here’)

pI‘O!Ilpt = nnn
I’d 1like to understand the two main themes of the movie description.

Please provide a list of two themes of it:

{{MOVIE}}

messages = [{"role": "system",
"content": "You’re a prompt engineer that needs to
optimize a prompt. I’ll give you a prompt
and you will and objective and
you’ll improve the prompt."},
{"role": "user", "content": promptl}]
15

Using LLMs for Prompt Optimization

Python Example with OpenAl API:

Code Snippet

response = client.chat.completion.create(

engine="gpt-4",
messages=messages,
temperature=0.7,
max_tokens=60,
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0

print (response.choices[0].text.strip())

16

Understanding Temperature in LLMs

Temperature in Language Models:

= Controls the randomness in the prediction of the next word.

= A lower temperature (e.g., 0.1) results in more deterministic and
confident outputs, often repeating the most likely words.

= A higher temperature (e.g., 1.0 or higher) increases diversity in
generated text, producing more varied and sometimes more creative
or unexpected results.

17

Understanding Temperature in LLMs

Temperature in Language Models:

= Controls the randomness in the prediction of the next word.

= A lower temperature (e.g., 0.1) results in more deterministic and
confident outputs, often repeating the most likely words.

= A higher temperature (e.g., 1.0 or higher) increases diversity in
generated text, producing more varied and sometimes more creative

or unexpected results.

Temperature Effect: Prompt: "The sun sets over the"

= Low Temperature (0.1): "The sun sets over the horizon.

= Medium Temperature (0.7): "The sun sets over the distant
mountains, casting a golden hue.”

= High Temperature (1.0): "The sun sets over the sea, weaving tales

of ancient mariners and distant shores.” 17

Understanding Temperature in LLMs

Effect of Temperature on Token Probability Distribution

1o Temperature = 0 Temperature = 0.5 Temperature = 2

08

06

§

£

04

02

00
NN NN
P ;LS L LS LLS F ;LS L LS, LSS
FEFFEEEEEEE FFEFEEEEE

Tokens

Higher temperature, smoother distribution

18

Understanding Top-p Sampling in LLMs

Top-p Sampling in Language Models:

= Selects the smallest set of words whose cumulative probability
exceeds a threshold p.

= It dynamically adjusts the size of the considered vocabulary based on
the p value, focusing on a more probable subset for each prediction.

= This approach helps balance between creativity and relevance by
avoiding the less probable, and hence more random, words without
being overly deterministic.

19

Understanding Top-p Sampling in LLMs

Top-p Sampling in Language Models:

= Selects the smallest set of words whose cumulative probability
exceeds a threshold p.

= It dynamically adjusts the size of the considered vocabulary based on
the p value, focusing on a more probable subset for each prediction.

= This approach helps balance between creativity and relevance by
avoiding the less probable, and hence more random, words without
being overly deterministic.

Top-p Sampling Effect: Prompt: "In the distant future, humanity”

= Low p Value (0.2): "survives in a utopia.”
= Medium p Value (0.5): "explores new galaxies, seeking life.”
= High p Value (0.9): "faces challenges beyond imagination, like Al

revolutions and interstellar wars.” 1

(2]
>
—
i
=

o0
=
=

=

©
(7]

Y

&
T

o0
=
S

c

®

e

(1]

b

5}
=)

=
>

Effect of Top-p on Token Probability Distribution

Top-p = 0.1

Top-p =05

Topp=1

|

00

Aungeqoid

Tokens

Tokens

Tokens

Lower top,, smallertokenssettoconsider

20

Few-Shot Learning Techniques for LLM Prompting

FSL techniques empower LLMs to adapt and generalize enhancing their
ability to comprehend and respond to diverse prompts.

Main Advantages:

= Flexibility: LLMs can learn from a small number of examples,
enabling adaptation to various tasks and contexts.

= Efficiency: Requires minimal labeled data, reducing the annotation
burden and facilitating rapid model customization.

= Generalization: Promotes robustness and adaptability by extracting
common patterns and concepts from limited examples.

Why Few-Shot Learning Works Better:

LLMs' extensive pre-training allows them to leverage prior knowledge and
patterns from diverse domains, enabling effective transfer learning with

few-shot examples. 1

Implementing Few-Shot Learning with OpenAl API

Python Example with OpenAl API:

Python Code Example

import openai

prompt = nnn
Translate the given text to French:
Hello world

Bonjour Monde !

few_shot_examples = ["\My name is Harryn\n---\nje m’appelle Harry.",
"I love pizzas\n\n---\n j’adore les pizzas"]

messages = [{"role": "system", "content": "Your a English to French translator"},
{"role": "user", "content": prompt},
{"role": "user", "content": "Here are some examples:\n " +

"\n\n".join(few_shot_examples)},
{"role": "user", "content": "What is your favorite color?"}]
22

Implementing Few-Shot Learning with OpenAl API

Python Code Example

Perform few-shot learning with OpenAI API

response = client.chat.completion.create(
engine="gpt-4",
messages=messages
temperature=0.7,
max_tokens=100

Print the generated response
print (response.choices[0].text.strip())

23

Chain of Thoughts in LLMs

Chain of Thoughts is a technique used to guide the generation of
responses in Large Language Models (LLMs) by breaking down the
thought process into smaller, sequential steps.

= Sequential Generation: LLMs are prompted with a series of
interconnected thoughts or questions, each building upon the
previous one.

= Structured Outputs: By structuring the input as a chain of related
thoughts, LLMs are encouraged to produce coherent and
contextually relevant responses.

= Enhanced Understanding: This technique helps LLMs understand
the context and intent better, leading to more accurate and
meaningful outputs.

= Improved Communication: CoT facilitates more natural and

engaging conversations, mimicking human thought processes. "

Implementing Chain of Thoughts with OpenAl API

Python Example with OpenAl API:

Python Code Example

import openai

prompt = """

Q: What is the value of 5!7

A: 5! =1x2x3x4x5, sob! =6zx20 =120
A: 120

Q: What is the value of (3 x 100) + 5 - (43 / 7)?"

Generate response using OpenAI API
response = client.chat.completion.create(
engine="text-davinci-003",
prompt=prompt,
temperature=0.7,
max_tokens=100)

25

Constraining LLM Outputs with JSON Schema

JSON schema provides a powerful way to define the structure of outputs
from LLMs, ensuring that generated text adheres to specific formats or

contains particular types of information.

= Defining the Schema: Specify the expected output format using
JSON schema, including types of data, required fields, and
descriptions.

= Applying to LLMs: Use the schema within the request to an LLM
(such as OpenAl's GPT) to guide the generation process, ensuring
outputs match the defined structure.

= Example Use Case: For tasks requiring structured data, like
extracting specific information from text or generating content that
fits a particular format.

= Benefits: Improves the utility of LLMs in applications where precise

data structure or specific information extraction is crucial. 6

Implementing schema’s output with Dolly

Py Code mple

from jsonformer import Jsonformer

from transformers import AutoModelForCausallLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-12b")
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b")

json_schema = {
"type": "object",
"properties": {
"human": {
"type": "object",
"properties": {

"name": {"type": "string"},
"occupation": {"type": "string"},
"is_student": {"type": "boolean"},
}
}
}

27

Implementing schema’s output with Dolly

Py Code mple

prompt = nnn

Generate a person’s information based on the following schema:

My name is Arnault and I work as lecturer at BSE in Barcelona.

jsonformer = Jsonformer(model, tokenizer, json_schema, prompt)

{
"human": {
"type": "object",
"properties": {
"name": "Arnault",
"occupation": "lecturer",
"is_student": False,
}
}
}

28

Retrieval-Augmented Generation Methods

1. Naive RAG:

= Simple retrieval process to fetch relevant passages from a KB.
= Retrieved information is concatenated with the query to augment
the context before generation.

2. Advanced RAG:

= Make it as complicated as you wish with hierarchical index retrieval,
sentence window retrieval, similar as search engines.

3. Hypothetical Document Embeddings:

= Instead of directly retrieving documents, this approach generates
embeddings for hypothetical documents that could answer the query.

= Embeddings are used to fetch the most relevant documents from the
knowledge base, bridging the gap between query and available
knowledge. 29

Naive RAG

Naive RAG

Database

t

Vector store

Index
. Embecdling]
—(=r)=

K —

Credit: Ivan llin

s ()

Naive Retrieval-Augmented Generation (RAG) Principle

How It Works:

= Uses a retriever to fetch relevant passages from a knowledge base
(e.g., vector database, search engine).

= Retrieved passages are concatenated with the user's query.

= The combined context is fed into the language model.

Advantages:

= Simple and effective for queries well-covered in the knowledge base.
= Easy to implement with existing retrieval tools.

Limitations:

= Relies on exact or near-exact matches in retrieval, limiting relevance
for complex queries.

= May struggle with under-specified or nuanced queries. i

Hypothetical Document Embeddings:

How wisdom teeth are removed...
H D E Some ... a few minutes, whereas
y Itusually takes between 30 others can take 20 minutes or

minutes and two hours to longer.
remove a wisdom tooth...

write a passage to answer the question

how long does it take to remove
wisdom tooth

write a scientific paper passage o answer
the question o ~
How has the COVID-19 pandemic impacted

mental health?

depression and anxiety had X (... two studies investigating
increased by 20% since the Contriever COVID-19 patients ... significantly
start of the pandemic... L) higher level of depressive ...

917(0 £8 A8 7|52 %

write a passage in Korean to answer the 8002 FSE LIEHChCE. 22 NS A8 A7 5B
question in detail G2 S A7t AT 1428F 4 T O
2 7iaizict

QIZk2 olX| &8 AH8RETI?

instruction query generated document real document

Figure 1: An illustration of the HyDE model. Documents snippets are shown. HyDE serves all types of queries without
changing the underlying GPT-3 and Contriever/mContriever models.

Credit: Gao et al. (2022)

Precise Zero-Shot Dense Retrieval without Relevance Labels

32

Why HyDE Improves Over Naive RAG

Limitations of Naive RAG:

= Mismatch between query and retrieved texts.
= Difficulty in addressing under-specified or abstract queries.

Hypothetical Document Embeddings (HyDE) Approach:

= Generates a hypothetical answer to the user’s query using the LLM.

= Creates an embedding of this hypothetical answer to retrieve more
semantically relevant passages from the knowledge base.

= The retrieved context is closer in meaning to the user’s intent.

Benefits of HyDE:

= Bridges the gap between abstract queries and available knowledge.
= Enhances the model's ability to provide nuanced, relevant answers

even for vague or novel queries. .

Supervised Fine-Tuning (SFT)

Overview of Supervised Fine-Tuning: leverages labeled data to
enhance models' understanding & response quality in targeted domains.

Examples of Open Source Datasets:

= GPT-4all Dataset: A diverse QA and creative questions dataset
with 400k entries, combining subsets of OIG, P3, and Stackoverflow.

= RedPajama-Data-1T: A massive 1.2T tokens pretraining dataset,
designed following LLaMA's methodology for open pretraining.

= OASST1: The OpenAssistant dataset with 66,497 multilingual
conversation trees, focused on enhancing LLM dialog capabilities
through human-written and annotated conversations.

Significance: Supervised FT enables LLMs like ChatGPT to perform
better in specialized tasks or languages, making them more versatile and

effective in real-world applications.
34

ine Tuning dataset example

prompt (string)

"<p>Good morning</p> <p>I have a Wpf datagrid that

is displaying an observable collection of a custom.

"<h2>Hi, How can I generate a pdf with the screen
visual data, or generate a pdf of the data being..

"<pre><code>package
com.kovair.omnibus.adapter.platform; import..

"<p>I'm trying to get it so that all of the items

in ListView.builder can be displayed on the screen..

"<p>I have used a <code>ListView</code> and the
parent in the <code>xml</code> is..

"<p>I am calling a stored proc [MS SQL] using EF5

from a .net application</p> <p>The call from EF</p..

"<p>This code is about viewing a published

consultation schedule. Unfortunately I'm stuck wit..

response (string)

"One possible solution is to use a fixed width for
the GroupItem header and align the header and the..

"To generate a PDF with the screen visual data, you
can use a library such as pdf. Here's an example:..

"The issue might be related to class loading and
garbage collection. When a class loader loads a..

"To make the whole page scrollable, remove the
‘SingleChildScrollView' and wrap the entire..

"The issue seems to be with the layout parameters
being set in the 'getView()' method. The code is..

"<p>This is likely due to the fact that CHAR
columns are fixed-length and padded with spaces to..

"The issue with the if statement is that it is
inside the for loop, but it should be outside of..

GPT-4all Dataset

35

Implementing Supervised Fine-Tuning with SFT Trainer

Using Hugging Face’s ‘SFT Trainer*:

The ‘SFTTrainer' is a tool in Hugging Face's Transformers library
designed to streamline the fine-tuning of large language models on

specific datasets.

Python Code Example

from transformers import AutoTokenizer, AutoModelForCausallLM

from transformers SFTTrainer, TrainingArguments

tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b")
model = AutoModelForCausallLM.from_pretrained("databricks/dolly-v2-12b")

train_dataset = load_dataset("path/to/dataset")

36

Implementing Supervised Fine-Tuning with SFT Trainer

Py Code mple

Define training arguments

training_args = TrainingArguments (
output_dir="./fine_tuned_model",
num_train_epochs=3,
per_device_train_batch_size=4,

logging_dir="./logs",

Initialize SFTTrainer

trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,

tokenizer=tokenizer,

trainer.train()

37

Limitations of Supervised Fine-Tuning without RHLF

Challenges: While SFT can significantly enhance LLMs’ performance on
specific tasks, doing so without access to RLHF introduces several limitations:

= Bias Amplification: Fine-tuning on biased datasets without RHLF can
lead to the amplification of existing biases, affecting the fairness and
neutrality of the model's outputs.

= Overfitting: The lack of diverse human feedback during fine-tuning may
result in models that overfit to the training data, hindering their

generalization to unseen contexts.

= Missed Learning Opportunities: RLHF can provide unique insights and
corrections that are crucial for improving models. Without it, models miss
out on learning from complex human interactions and corrections.

Conclusion: Incorporating RLHF is crucial for developing more adaptable,
unbiased, and generalizable LLMs. Overcoming these limitations requires

innovative approaches to integrate human feedback effectively.
38

Training Complexity of a 7B Parameter Model

Resource Requirements:

= Model size: ~ 28 GB in 32-bit (fp32) precision.

= Training memory: Gradient storage + optimizer states increase the
memory footprint ~ 3-4x.

= Total memory footprint: ~ 140 GB.

GPU Requirements:
= Requires multiple high-end GPUs (A100 80GB, H100 80GB, etc.).
= Example setup: 2x A100 80 GB or 4x A100 40 GB GPUs for

data/gradient parallelism.
Time Complexity:

= Days to weeks of training depending on dataset size and compute
budget.

= Infeasible on a single GPU. 39

LoRA: Train Large Models on a Single GPU

= LoRA stands for Low-Rank Adaptation.
= |t lets you fine-tune LLM using small,
trainable adapters instead of updating the
whole model.
How does it work?
= Original model weights are frozen.

= Add two small matrices, A and B, to
capture the task-specific adaptation.

= Only these small matrices are trained.
Why is it great?
= Needs much less memory and compute.

= You can fine-tune a huge model (e.g., 7B
LLaMA) on a single 24GB GPU.

Pretrained

Weights

xC—

LoRA matrices.
Credit: Hu et al. (2021)

40

RLHF through UX: Copilot Completion - Part 1

Integrating Human Feedback with UX in
LLMs: Advanced UX mechanisms, like those in
GitHub Copilot, demonstrate the power of

integrating human feedback into LLM
. S T

fine-tuning:
» Effortless Feedback Integration: GitHub Copilot UX

= Direct workflow integrations for accepting
suggestions (e.g., using TAB).
= Navigation shortcuts for efficient

suggestion review.

41

RLHF through UX: Copilot Completion - Part 2

User-Friendly Interaction Optimized
Feedback:
= User-Friendly Interaction:

= Suggestions are passive, maintaining user
workflow integrity.
= High latency sensitivity for timely,

relevant suggestions. oo e e
imized F k for Fine-Tuning:
= Optimized Feedback for Fine-Tuning: . " L0 x. Feedback

= Capturing implicit signals from user
interactions for model improvement.

= Encourages user engagement through low
requirements and high incentives.

Impact: UX designs that facilitate easy human
feedback collection empower continuous LLM

learning and user satisfaction. "

QA and Takeaways

Open Discussion
= Feel free to ask questions or share your thoughts about today’s
topics.
= Any insights, experiences, or perspectives you'd like to discuss are

welcome.

43

Summary of Key Takeaways

= Advancements in LLMs: Explored the evolution of Large Language
Models since 2022, highlighting the transition from text-only to
multimodal models and the emergence of platforms like ChatGPT.

= Applications Unveiled: Delved into various use cases of LLMs,
from GitHub Copilot to internal data querying with Llamalndex,
showcasing their wide-ranging impact across sectors.

= Mastering Prompt Engineering: Discussed techniques for effective
prompt engineering employing few-shot examples, and applying
chain of thoughts and structured outputs for enhanced interactions.

= Innovation with RAG: Introduced Retrieval-Augmented Generation
(RAG) methods, accentuating their role in optimizing context and
LLM performance for intricate querying tasks.

= Fine-Tuning LLMs: Covered fine-tuning methods for personalizing
LLMs to specific tasks, emphasizing the importance of UX in
providing human feedback for continuous model improvement.

	Introduction
	Applications & other models
	Maximizing LLM Performance
	QA and Takeaways

