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Introduction



Introduction to Today’s Lecture on LLMs and ChatGPT

Today, we delve into the world of LLMs such as ChatGPT, exploring their
advancements, applications, and the intricacies of prompt engineering,
fine-tuning, and retrieval-augmented generation (RAG).

Session Overview:

• Overview of LLMs: Introducing text-only and multimodal models,
and their evolution since 2022.

• Main Use Cases: Exploring the diverse applications of LLMs in
various domains.

• Prompt Engineering: Understanding the art of effectively
communicating with LLMs to achieve desired outcomes.

• Retrieval-Augmented Generation (RAG): Leveraging external
knowledge bases to enhance LLMs’ responses.

• Fine-Tuning Techniques: Techniques to customize LLMs for
specific tasks or datasets. 2



Training of ChatGPT: Process and Innovations

• Foundation Model: ChatGPT builds
upon a large transformer-based language
model, similar to GPT-3, trained on a
diverse range of internet text.

• Reinforcement Learning from Human
Feedback (RLHF):

• Supervised Fine-Tuning (SFT): Initial
fine-tuning on a dataset of conversational
prompts and responses.

• Reward Modeling (RM): Trained a reward
model to predict scores given by human
trainers for model-generated responses.

• Proximal Policy Optimization (PPO):
Final fine-tuning phase using the reward
model to guide training toward human
preferences.

Evolution of Texts LLM

Tie et al. (2025)
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Supervised Fine-Tuning (SFT) in ChatGPT

• Objective: Refine the foundational
language model towards conversational
understanding and response generation.

• Process:

• Utilizes a curated dataset comprising
diverse conversational prompts and
corresponding human-written responses.

• The model is fine-tuned to predict these
responses accurately, aligning its outputs
more closely with human-like
conversational patterns.

• Example:

• Prompt: ”What’s your favorite book and
why?”

• Model learns to generate engaging and
contextually relevant responses.

Supervised Fine-Tuning Phase
4
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Reward Modeling (RM) in ChatGPT

• Objective: Create a model to evaluate
and score generated texts based on human
preferences.

• Process:

• Human trainers rate the quality of
responses generated by the model,
considering factors like relevance,
coherence, and safety.

• Use the ratings to train a separate reward
model that learns to predict scores.

• Example:

• Response: ”My favorite book is ’To Kill a
Mockingbird’ because it tackles complex
themes with compelling storytelling.”

• Reward model learns to score such
responses for effectiveness and relevance.

Reward Modeling Phase 5
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Proximal Policy Optimization (PPO) in ChatGPT

• Objective: Refine ChatGPT’s responses
to align with human preferences.

• Process:

• The model’s training is guided by the
reward model to generate responses that
are likely to be scored highly.

• Iteratively adjusts the model’s parameters
to maximize the expected reward from
the reward model.

• Example:

• The model generates a variety of
responses to a prompt.

• It then estimates the reward for each
response and prefers choices that
maximize this reward, leading to more
human-aligned responses.

PPO Phase 6
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Evolution of PPO: Newer Techniques

• Direct Preference Optimization (DPO):
• Directly optimizes for human preferences, avoiding reward model

intermediaries.
• Improves sample efficiency and stability of RL-based fine-tuning.

• Simple Preference Optimization (SimPO):
• Focuses on stability and computational efficiency.
• Balances expressiveness and practicality in preference learning.

• Others:
• You have KPO, ORPO, IPO, DOVE, RLAIF, SPIN...
• You can take a look at Argilla’s blog posts.

7
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Training of ChatGPT: Process and Innovations

• Differences from Previous Models:

• Interactive Feedback: Incorporation of dialogues and human
interaction nuances.

• Dynamic Learning : Ability to learn from user interactions and adapt
responses.

• Ethical and Safety Considerations: Enhanced focus on generating
safe, ethical, and contextually appropriate responses.

8
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Applications & other models



Cursor: AI-Powered Code Editor

• What it is: A code editor with built-in AI
assistance to enhance coding productivity.

• How it works:

• Integrates a powerful LLM for code
completions, refactoring, and natural
language explanations.

• Supports seamless code navigation and
AI-enhanced coding workflows.

• Provides a chat with agent or manual
inputs directly within the editor.

• ROI:

• Speeds up coding tasks with smart
AI-based code generation.

• Enhances the development process
through quick code insights and
debugging support.
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LlamaIndex: Leveraging RAG for Internal Data

• What it is: A system that utilizes
Retrieval-Augmented Generation (RAG)
with LLMs for internal data querying and
analysis.

• How it works:

• Combines the power of LLMs with a
retrieval system to fetch relevant
documents.

• Enhances the generation of responses by
conditioning on retrieved documents.

• Usage:

• Facilitates complex queries on internal
datasets.

• Provides contextually enriched answers by
combining generative power with specific
data retrieval.

LlamaIndex
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Vera: Your Trusted Number for Fact-Checking

Functionality:
• Vera is a single, free-to-use app for

verifying facts and combating
misinformation.

• Provides users with quick and reliable
answers to fact-check claims.

Benefits:

• Accessibility: A simple and direct solution
to access fact-checked information.

• Public Trust: Promotes transparency and
helps build trust in information sources.

• Countering Misinformation: Acts as a
frontline tool in the fight against
misinformation and polarization.

Vera: askvera.org

11
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Maximizing LLM Performance



Techniques to Utilize LLMs

• Prompt Engineering: Crafting prompts that guide the LLM to
generate the desired output. Asking the model to act in a specific
way, leveraging pre-trained knowledge to fulfill complex tasks.

• Retrieval-Augmented Generation (RAG): Optimizing the context
by providing the model with external knowledge to know before
generating a response. This method enhances the model’s ability to
generate more contextually relevant answers.

• Fine-Tuning: Training the LLM on a specific dataset to optimize its
performance for a particular task. It’s about how the model needs to
act, refining its responses based on additional training to align with
the task’s requirements.

• Combining Techniques: While each technique has its strengths,
combining prompt engineering, RAG, and fine-tuning can offer a
comprehensive approach to leveraging LLMs. The best direction
depends on the specific use case. 12



Techniques to Utilize LLMs

From openAI demo day
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Prompt Engineering with LLMs

Techniques for Enhanced Interaction:

• LLM-Enhanced Prompts: Utilizing LLMs to refine prompts for
better accuracy and relevance. eg. Liu et al., 2023 - ”Dynamic
LLM-Agent Network”

• Few-Shot Learning: Incorporating examples within prompts to
guide LLMs towards desired outputs. Reference: GPT-3, OpenAI.

• Chain of Thoughts: Encouraging LLMs to ”think aloud,”
enhancing reasoning for complex queries. eg. Wei et al., 2022 -
”Chain of Thought Prompting Elicits Reasoning in Large Language
Models.”

• Schema-Constrained Output: Structuring prompts to yield
outputs in specific formats, like JSON for NER tasks. eg. Shin et
al., 2021 - ”Constrained Language Models Yield Few-Shot Semantic
Parsers.” 14



Using LLMs for Prompt Optimization

Python Example with OpenAI API:
Code Snippet

from openai import OpenAI
client = OpenAI(api_key=’your-api-key-here’)

prompt = """
I’d like to understand the two main themes of the movie description.
Please provide a list of two themes of it:

{{MOVIE}}
"""

messages = [{"role": "system",
"content": "You’re a prompt engineer that needs to

optimize a prompt. I’ll give you a prompt
and you will and objective and
you’ll improve the prompt."},

{"role": "user", "content": prompt}]
15



Using LLMs for Prompt Optimization

Python Example with OpenAI API:

Code Snippet

response = client.chat.completion.create(
engine="gpt-4",
messages=messages,
temperature=0.7,
max_tokens=60,
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0

)

print(response.choices[0].text.strip())

16



Understanding Temperature in LLMs

Temperature in Language Models:

• Controls the randomness in the prediction of the next word.
• A lower temperature (e.g., 0.1) results in more deterministic and

confident outputs, often repeating the most likely words.
• A higher temperature (e.g., 1.0 or higher) increases diversity in

generated text, producing more varied and sometimes more creative
or unexpected results.

Temperature Effect: Prompt: ”The sun sets over the”

• Low Temperature (0.1): ”The sun sets over the horizon.”
• Medium Temperature (0.7): ”The sun sets over the distant

mountains, casting a golden hue.”
• High Temperature (1.0): ”The sun sets over the sea, weaving tales

of ancient mariners and distant shores.”
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Understanding Temperature in LLMs

Higher temperature, smoother distribution
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Understanding Top-p Sampling in LLMs

Top-p Sampling in Language Models:

• Selects the smallest set of words whose cumulative probability
exceeds a threshold p.

• It dynamically adjusts the size of the considered vocabulary based on
the p value, focusing on a more probable subset for each prediction.

• This approach helps balance between creativity and relevance by
avoiding the less probable, and hence more random, words without
being overly deterministic.

Top-p Sampling Effect: Prompt: ”In the distant future, humanity”

• Low p Value (0.2): ”survives in a utopia.”
• Medium p Value (0.5): ”explores new galaxies, seeking life.”
• High p Value (0.9): ”faces challenges beyond imagination, like AI

revolutions and interstellar wars.”
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Understanding Top-p Sampling in LLMs

Lower topp , smallertokenssettoconsider
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Few-Shot Learning Techniques for LLM Prompting

FSL techniques empower LLMs to adapt and generalize enhancing their
ability to comprehend and respond to diverse prompts.

Main Advantages:

• Flexibility: LLMs can learn from a small number of examples,
enabling adaptation to various tasks and contexts.

• Efficiency: Requires minimal labeled data, reducing the annotation
burden and facilitating rapid model customization.

• Generalization: Promotes robustness and adaptability by extracting
common patterns and concepts from limited examples.

Why Few-Shot Learning Works Better:

LLMs’ extensive pre-training allows them to leverage prior knowledge and
patterns from diverse domains, enabling effective transfer learning with
few-shot examples. 21



Implementing Few-Shot Learning with OpenAI API

Python Example with OpenAI API:
Python Code Example

import openai
prompt = """
Translate the given text to French:
Hello world
---
Bonjour Monde !
"""

few_shot_examples = ["\My name is Harryn\n---\nje m’appelle Harry.",
"I love pizzas\n\n---\n j’adore les pizzas"]

messages = [{"role": "system", "content": "Your a English to French translator"},
{"role": "user", "content": prompt},
{"role": "user", "content": "Here are some examples:\n " +

"\n\n".join(few_shot_examples)},
{"role": "user", "content": "What is your favorite color?"}]

22



Implementing Few-Shot Learning with OpenAI API

Python Code Example

# Perform few-shot learning with OpenAI API
response = client.chat.completion.create(

engine="gpt-4",
messages=messages
temperature=0.7,
max_tokens=100

)

# Print the generated response
print(response.choices[0].text.strip())

23



Chain of Thoughts in LLMs

Chain of Thoughts is a technique used to guide the generation of
responses in Large Language Models (LLMs) by breaking down the
thought process into smaller, sequential steps.

• Sequential Generation: LLMs are prompted with a series of
interconnected thoughts or questions, each building upon the
previous one.

• Structured Outputs: By structuring the input as a chain of related
thoughts, LLMs are encouraged to produce coherent and
contextually relevant responses.

• Enhanced Understanding: This technique helps LLMs understand
the context and intent better, leading to more accurate and
meaningful outputs.

• Improved Communication: CoT facilitates more natural and
engaging conversations, mimicking human thought processes. 24



Implementing Chain of Thoughts with OpenAI API

Python Example with OpenAI API:
Python Code Example

import openai

prompt = """
Q: What is the value of 5!?
A: 5! = 1 x 2 x 3 x 4 x 5, so 5! = 6 x 20 = 120
A: 120

Q: What is the value of (3 x 100 ) + 5 - (43 / 7)?"

# Generate response using OpenAI API
response = client.chat.completion.create(

engine="text-davinci-003",
prompt=prompt,
temperature=0.7,
max_tokens=100)

25



Constraining LLM Outputs with JSON Schema

JSON schema provides a powerful way to define the structure of outputs
from LLMs, ensuring that generated text adheres to specific formats or
contains particular types of information.

• Defining the Schema: Specify the expected output format using
JSON schema, including types of data, required fields, and
descriptions.

• Applying to LLMs: Use the schema within the request to an LLM
(such as OpenAI’s GPT) to guide the generation process, ensuring
outputs match the defined structure.

• Example Use Case: For tasks requiring structured data, like
extracting specific information from text or generating content that
fits a particular format.

• Benefits: Improves the utility of LLMs in applications where precise
data structure or specific information extraction is crucial. 26



Implementing schema’s output with Dolly

Python Code Example

from jsonformer import Jsonformer
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-12b")
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b")

json_schema = {
"type": "object",
"properties": {

"human": {
"type": "object",
"properties": {

"name": {"type": "string"},
"occupation": {"type": "string"},
"is_student": {"type": "boolean"},

}
}
}

}
27



Implementing schema’s output with Dolly

Python Code Example

prompt = """
Generate a person’s information based on the following schema:

My name is Arnault and I work as lecturer at BSE in Barcelona.
"""
jsonformer = Jsonformer(model, tokenizer, json_schema, prompt)

{
"human": {

"type": "object",
"properties": {

"name": "Arnault",
"occupation": "lecturer",
"is_student": False,

}
}

}
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Retrieval-Augmented Generation Methods

1. Naive RAG:

• Simple retrieval process to fetch relevant passages from a KB.
• Retrieved information is concatenated with the query to augment

the context before generation.

2. Advanced RAG:

• Make it as complicated as you wish with hierarchical index retrieval,
sentence window retrieval, similar as search engines.

3. Hypothetical Document Embeddings:

• Instead of directly retrieving documents, this approach generates
embeddings for hypothetical documents that could answer the query.

• Embeddings are used to fetch the most relevant documents from the
knowledge base, bridging the gap between query and available
knowledge. 29



Naive RAG

Credit: Ivan Ilin
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Naive Retrieval-Augmented Generation (RAG) Principle

How It Works:

• Uses a retriever to fetch relevant passages from a knowledge base
(e.g., vector database, search engine).

• Retrieved passages are concatenated with the user’s query.
• The combined context is fed into the language model.

Advantages:

• Simple and effective for queries well-covered in the knowledge base.
• Easy to implement with existing retrieval tools.

Limitations:

• Relies on exact or near-exact matches in retrieval, limiting relevance
for complex queries.

• May struggle with under-specified or nuanced queries.
31



Hypothetical Document Embeddings:

Credit: Gao et al. (2022)

Precise Zero-Shot Dense Retrieval without Relevance Labels
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Why HyDE Improves Over Naive RAG

Limitations of Naive RAG:

• Mismatch between query and retrieved texts.
• Difficulty in addressing under-specified or abstract queries.

Hypothetical Document Embeddings (HyDE) Approach:

• Generates a hypothetical answer to the user’s query using the LLM.
• Creates an embedding of this hypothetical answer to retrieve more

semantically relevant passages from the knowledge base.
• The retrieved context is closer in meaning to the user’s intent.

Benefits of HyDE:

• Bridges the gap between abstract queries and available knowledge.
• Enhances the model’s ability to provide nuanced, relevant answers

even for vague or novel queries.
33



Supervised Fine-Tuning (SFT)

Overview of Supervised Fine-Tuning: leverages labeled data to
enhance models’ understanding & response quality in targeted domains.

Examples of Open Source Datasets:

• GPT-4all Dataset: A diverse QA and creative questions dataset
with 400k entries, combining subsets of OIG, P3, and Stackoverflow.

• RedPajama-Data-1T: A massive 1.2T tokens pretraining dataset,
designed following LLaMA’s methodology for open pretraining.

• OASST1: The OpenAssistant dataset with 66,497 multilingual
conversation trees, focused on enhancing LLM dialog capabilities
through human-written and annotated conversations.

Significance: Supervised FT enables LLMs like ChatGPT to perform
better in specialized tasks or languages, making them more versatile and
effective in real-world applications.
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Fine Tuning dataset example

GPT-4all Dataset
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Implementing Supervised Fine-Tuning with SFTTrainer

Using Hugging Face’s ‘SFTTrainer‘:

The ‘SFTTrainer‘ is a tool in Hugging Face’s Transformers library
designed to streamline the fine-tuning of large language models on
specific datasets.
Python Code Example

from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers SFTTrainer, TrainingArguments

tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b")
model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-12b")

train_dataset = load_dataset("path/to/dataset")
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Implementing Supervised Fine-Tuning with SFTTrainer

Python Code Example

# Define training arguments
training_args = TrainingArguments(

output_dir="./fine_tuned_model",
num_train_epochs=3,
per_device_train_batch_size=4,
logging_dir="./logs",

)

# Initialize SFTTrainer
trainer = SFTTrainer(

model=model,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer,

)

trainer.train()
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Limitations of Supervised Fine-Tuning without RHLF

Challenges: While SFT can significantly enhance LLMs’ performance on
specific tasks, doing so without access to RLHF introduces several limitations:

• Bias Amplification: Fine-tuning on biased datasets without RHLF can
lead to the amplification of existing biases, affecting the fairness and
neutrality of the model’s outputs.

• Overfitting: The lack of diverse human feedback during fine-tuning may
result in models that overfit to the training data, hindering their
generalization to unseen contexts.

• Missed Learning Opportunities: RLHF can provide unique insights and
corrections that are crucial for improving models. Without it, models miss
out on learning from complex human interactions and corrections.

Conclusion: Incorporating RLHF is crucial for developing more adaptable,
unbiased, and generalizable LLMs. Overcoming these limitations requires
innovative approaches to integrate human feedback effectively.
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Training Complexity of a 7B Parameter Model

Resource Requirements:

• Model size: ≈ 28 GB in 32-bit (fp32) precision.
• Training memory: Gradient storage + optimizer states increase the

memory footprint ≈ 3-4x.
• Total memory footprint: ≈ 140 GB.

GPU Requirements:

• Requires multiple high-end GPUs (A100 80GB, H100 80GB, etc.).
• Example setup: 2× A100 80 GB or 4× A100 40 GB GPUs for

data/gradient parallelism.

Time Complexity:

• Days to weeks of training depending on dataset size and compute
budget.

• Infeasible on a single GPU. 39



LoRA: Train Large Models on a Single GPU

• LoRA stands for Low-Rank Adaptation.
• It lets you fine-tune LLM using small,

trainable adapters instead of updating the
whole model.

How does it work?
• Original model weights are frozen.
• Add two small matrices, A and B, to

capture the task-specific adaptation.
• Only these small matrices are trained.

Why is it great?
• Needs much less memory and compute.
• You can fine-tune a huge model (e.g., 7B

LLaMA) on a single 24GB GPU.

LoRA matrices.

Credit: Hu et al. (2021)
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RLHF through UX: Copilot Completion - Part 1

Integrating Human Feedback with UX in
LLMs: Advanced UX mechanisms, like those in
GitHub Copilot, demonstrate the power of
integrating human feedback into LLM
fine-tuning:

• Effortless Feedback Integration:
• Direct workflow integrations for accepting

suggestions (e.g., using TAB).
• Navigation shortcuts for efficient

suggestion review.

GitHub Copilot UX
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RLHF through UX: Copilot Completion - Part 2

User-Friendly Interaction Optimized
Feedback:

• User-Friendly Interaction:
• Suggestions are passive, maintaining user

workflow integrity.
• High latency sensitivity for timely,

relevant suggestions.
• Optimized Feedback for Fine-Tuning:

• Capturing implicit signals from user
interactions for model improvement.

• Encourages user engagement through low
requirements and high incentives.

Impact: UX designs that facilitate easy human
feedback collection empower continuous LLM
learning and user satisfaction.

GitHub Copilot UX: Feedback
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QA and Takeaways



QA

Open Discussion

• Feel free to ask questions or share your thoughts about today’s
topics.

• Any insights, experiences, or perspectives you’d like to discuss are
welcome.
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Summary of Key Takeaways

• Advancements in LLMs: Explored the evolution of Large Language
Models since 2022, highlighting the transition from text-only to
multimodal models and the emergence of platforms like ChatGPT.

• Applications Unveiled: Delved into various use cases of LLMs,
from GitHub Copilot to internal data querying with LlamaIndex,
showcasing their wide-ranging impact across sectors.

• Mastering Prompt Engineering: Discussed techniques for effective
prompt engineering employing few-shot examples, and applying
chain of thoughts and structured outputs for enhanced interactions.

• Innovation with RAG: Introduced Retrieval-Augmented Generation
(RAG) methods, accentuating their role in optimizing context and
LLM performance for intricate querying tasks.

• Fine-Tuning LLMs: Covered fine-tuning methods for personalizing
LLMs to specific tasks, emphasizing the importance of UX in
providing human feedback for continuous model improvement. 44
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