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Introduction



Introduction to Word Embeddings

Today’s Focus: Unveiling the Power of Word Embeddings

• Sparse Vectors and Ontologies: Evolution of word representation.
• Embedding quality: Evaluating embeddings methods.

Old Fashion Embedding Techniques

• Word2Vec Insights: Understanding the mechanics and impact of
Word2Vec and the Skip-Gram model.

• Exploring Static Word Embeddings: Other famous static
wordembedding methods: GloVe and FastText.

Advancing to Sophisticated Embedding Techniques

• Contextual Word Embeddings: Delving into ELMo.
• Future of Embeddings: Advanced models like BERT and GPT-x.
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Word Representation



Introduction & Motivations

Traditional word representation methods (cf. Session 1):

• One-Hot Vectors: Each token is associated with a unique index.
• Token Counts (Hans P. Luhn, 1957): Token frequencies in the text.
• TF-IDF (Spärck Jones, K., 1972): Token’s importance relative to

its frequency across documents.

Limitations of Traditional Techniques:

• Sparsity: Dimensions depends on vocabulary length, sparse vectors,
inefficient for computation.

• Lack of Context: Do not capture the context or semantics of
words, limiting the representation’s expressiveness.

• Synonymy and Polysemy: Struggle with words that have multiple
meanings or similar meanings, leading to ambiguity in
representation. 3



Introduction & Motivations: Capturing Semantic Similarity

Semantic Similarity - A Human Concept:
• Traditional models often fail to capture

the inherent semantic similarity between
concepts that are intuitively understood by
humans.

• Examples of semantically similar concepts:

• ’stag’ and ’deer’
• ’osteopath’ and ’physiotherapist’
• ’prince’ and ’king’

• This gap highlights the need for models
that can effectively transfer human-like
understanding of language and semantics.

Stag

Deer

Credits: DuckDuckGo

Research
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Semantic Similarity with TF-IDF

TF-IDF Representation:
• Vocabulary: {’cat’, ’dog’,

’apple’, ’car’, ’tree’, ’robot’}
• wi : xj = 1 if j = i else 0

Limitation - Words Distance
• In this high-dimensional space,

distance between words means
nothing.

• Fails to capture any semantic
or contextual relationships
between words.

High-dimensional space of Tf-IDF
Vectorizer
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Word Embeddings



Concept of Word Embeddings

Ideal representations: Vector representations
of words in a vector space where semantically
similar words are mapped to nearby points.

Key Properties:

• Semantic Relationships: Words with
similar meanings are located in close
proximity. The closer the words, the more
similar.

• Syntactic Relationships: Capturing
patterns in word use based on the context,
and certain algebraic ”operations” to
produce meaningful relationships (e.g.,
”king” - ”man” + ”woman” ”queen”).

Ideal Vector Space Credits:

Wikipedia
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Evaluations of the Embeddings



Assessing the Quality of Word Embeddings

Evaluating Word Representation Word
representation effectiveness can be assessed
through intrinsic and extrinsic evaluations.
Intrinsic Evaluation: Measures how well the
embedding captures linguistic properties:

• Word Similarities: Evaluating the
closeness of words in the embedding space.

• Word Analogies: Testing the
embedding’s ability to deduce
relationships.

• Synonym Detection: Identifying words
with similar meanings.

• Word Clustering: Grouping semantically
similar words.

Illustration of Word Analogies

Credit: Mikolov et al., 2013
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Intrinsic Evaluation Example: Word Similarities

Assessing Word Similarities:

• Evaluates how well the embedding captures
semantic similarities between words.

• Measures the cosine similarity between
vectors representing different words.

Example:

• Comparing words such as ’king’ and ’queen’
versus ’king’ and ’apple’.

• Expect ’king’ and ’queen’ to have a higher
similarity score than ’king’ and ’apple’.

Importance: Understanding word similarities allows
for a nuanced understanding of the embedding
space, reflecting how well the model captures
semantic relationships.

Word similarities
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Assessing the Quality of Word Embeddings

Extrinsic Evaluation: Assesses the
performance of embeddings in downstream
tasks:

• Named Entity Recognition (NER):
Identifying named entities in text.

• Text Classification: Categorizing text
into predefined classes.

• Part-of-Speech (POS) Tagging:
Labeling words with their corresponding
part of speech.

• ...and other NLP tasks.

GLUE Benchmark
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Extrinsic Evaluation Example: Text Classification

Text Classification with Embeddings:

• Evaluates the effectiveness of word
embeddings in text classification.

• Measures the improvement in classification
accuracy when using embeddings.

Example:

• Using word embeddings as features for a
sentiment analysis model.

• Comparing model performance with and
without the use of embeddings.

Importance: Demonstrates the practical utility of
word embeddings in real-world applications,
highlighting their contribution to model
performance.

Microsfot Sentence

Completion Challenge

Credit: Mikolov et al. 2013
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One proposal



Ontologies

Structured framework to define and categorize
entities within a domain.

• Level: Distinguishing between instances.

• Class: Grouping entities into collections or
concepts.

• Attribute: Describing entities through
characteristics.

• ...and more domain-specific categorizations.

Domain-Specific Ontologies:

• Medicine: ICD-9 or ICD-10 for diseases.

• Computer Science: Structured codes.

Limitations: Ontologies are not scalable:
establishing comprehensive links between all entities
can be labor-intensive and complex.

Word Representation through
Ontology

Credits: Jay Alammar
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Continuous Vector representation



Advantages of Continuous Dense Embeddings

Dense embeddings provide compact, rich
representations of words, capturing semantic and
syntactic nuances effectively.
Key Benefits:

• Semantic Richness: Encapsulate meanings.

• Reduced Dimensionality: Lower-dimensional
space.

• Mathematical Operability: Enable
operations like analogy solving.

• Enhanced Performance: Boost NLP tasks
with contextually-aware representations.

Word Representation
Credits: Jay Alammar

Conclusion: Dense embeddings represent a leap in language modeling,
facilitating advanced architectures and deeper language understanding.
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Continuous Vector Representation: Word2Vec (W2V)

Word2Vec - Mikolov et al. (2013): Word2Vec
offers two architecture choices for generating dense
word embeddings, inspired by language modeling:
Continuous Bag-Of-Words (CBOW):

• Represents words through n-gram context.

• Uses projection matrices (embedding layers) to
capture word features.

• Aims to predict a target word based on
surrounding context words.

Continuous Skip-gram:

• Also uses n-gram representation and projection
matrices.

• In contrast to CBOW, predicts surrounding
context words from a target word, offering
quality embeddings for even infrequent words.

Illustrations of Skip-gram and

CBOW Architectures Credit:

Mikolov et al. (2013)
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Training the Skip-Gram Model: Data Collection

Objective of Skip-Gram: The Skip-Gram model aims to predict context
words given a target word, strengthening the word associations within a
specified window size.

Training Data Preparation:

• Features (Input): Target words.
• Labels (Output): Context words within a defined window size

around the target word.

We don’t need labelled data: we can collect texts from Wikipedia,
books, internet... and create the training set from it !
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Training the Skip-Gram Model: Data Preparation

Example: Given the sentence ”The quick brown fox
jumps over”, with a window size of 1, the training
pairs are:

• Input: ”quick”, Output: [”The”, ”brown”]

• Input: ”brown”, Output: [”quick”, ”fox”]

• ... and so on. Training pairs generation
in Skip-Gram Model

15



Training Skip-Gram Model: Model Architecture (1/2)

Model Architecture:

• Input Layer: One-hot encoded vectors of the target words.
• Embedding layer: A fully connected layer of dimension

|Vocabulary| x Embedding size n
• Hidden Layer: A fully connected layer without activation, to

project to the output vocabulary.
• Output Layer: Predicts the probability distribution (softmax) of

context words for the given input.

16



Training Skip-Gram Model: Model Architecture (2/2)

Skip-Gram Model Architecture; predict context from one word

Main Limitation: each time we’re computing softmax for V words
(could be 10e6!) the process is computationally expensive..
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Negative Sampling in Skip-Gram Model

Challenge in Training: The standard Skip-Gram model with softmax
can be computationally expensive due to the large vocabulary size.

Solution - Negative Sampling:

• Concept: Instead of predicting the probability for all words in the
vocabulary, negative sampling trains the model to distinguish a
target word from a small set of random ’noise words’.

• Benefits: Simplifies the computation and accelerates the training
process, especially for large corpora.

Implementation: In each training step:

• Select a small number of negative samples (words not in the
context).

• Update weights based on the target word and the sampled negative
words.

18
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Training Skip-Gram Model with NS: Data Preparation

Example: Given the sentence ”The quick brown fox
jumps over”, with a window size of 1, the training
pairs are:

• Input: [”quick”, ”brown”] Output: 1

• Input: [”quick”, ”yellow”] Output 0

• Input: [”brown”, ”fox”] Output: 1

• Input: [”brown”, ”fly”] Output: 0

• ... and so on.

Training pairs generation
in Skip-Gram Model with

Negative Sampling
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Training Skip-Gram Model with NS: Model Architecture (1/2)

Model Architecture:

• Input Layer: One-hot encoded vectors of the target words. One-hot
Encoded vectors of the context words.

• Embedding layer: A fully connected layer of dimension
|Vocabulary| x Embedding size n

• Context Layer: A fully connected layer of dimension |Vocabulary| x
Embedding size n

• Output Layer: Predicts the probability distribution (softmax) of
second word to be the context of first word.
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Training Skip-Gram Model with NS: Model Architecture (2/2)

Skip-Gram Model Architecture; predict context from one word

Main Difference: each time we’re computing softmax for one true
target and some noise instead of the vocabulary V words !
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Word2Vec Application: Analyzing Word Pair Relationships

• Cosine Similarity: Measures the
cosine of the angle between two word
vectors, indicating how similar they are
in the embedding space.

• Word pair relationship analysis has
practical uses in fields like semantic
search, automated text analysis, and
even in creative domains like
generating novel content based on
identified patterns.

• A deeper understanding of word
relationships can enhance language
models, making them more robust and
contextually aware.

Word Pairs Relationships
Credit: Mikolov et al. (2013)
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Introduction to GloVe and FastText

GloVe - Global Vectors for Word Representation:

• Co-occurrence Matrix: GloVe is built on word-word co-occurrence
statistics from a corpus, capturing global statistical information.

• Applications: Widely used in applications requiring an understanding of
word similarity and analogy based on global corpus statistics.

FastText - Advanced Word Representation:

• Subword Information: Extends the Word2Vec model by representing each
word as a bag of character n-grams, capturing morphological information.

• Handling Rare Words: Particularly effective in understanding and
representing rare words or misspellings.

• Applications: Useful in tasks where morphological information is crucial,
like language modeling and text classification in morphologically rich
languages. 23



Limitations of Static Word Embeddings

Key Limitations:

• Word Sense Ambiguity: only one vector per word, ignoring the
polysemy where words have multiple meanings based on context.

• Context Ignorance: Unable to capture the meaning of a word in
different contexts. The same word in different sentences will have
the same representation.

• Out-of-Vocabulary (OOV) Words: Challenges in handling words
not present in the training corpus. FastText addresses this partially
with subword information.

• Fixed Representations: Fixed after training, not allowing the
model to adapt to evolving language use or domain-specific jargon.

• Resource Intensive: Requires substantial computational resources
and time to train on large corpora, making it less feasible for
resource-constrained scenarios.
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Contextual Embeddings



Introduction to Contextual Embeddings

Overcoming the Limitations: Contextual embeddings represent the
next evolution in word representations, addressing the inherent
constraints of static word embeddings.

What are Contextual Embeddings?

• Dynamic Word Representations: Unlike static embeddings,
contextual embeddings provide representations that change based on
the word’s context.

• Deep Contextualization: These models consider the entire
sentence or even larger contexts to understand the meaning of each
word.

25



Introduction to Contextual Embeddings

Pioneering Models:

• ELMo (Embeddings from Language Models), Peters et al.
(2018): Utilizes bidirectional LSTM trained on a specific task to
generate embeddings.

• BERT (Bidirectional Encoder Representations from
Transformers), Delvin et al. (2019): Transforms the landscape
with a transformer-based model, pre-trained on vast amounts of text
and fine-tuned for specific tasks.

• GPT-2 (Generative Pre-trained Transformer), Radford et al.
(2019): Emphasizes generative capabilities and large-scale
pre-training for versatile language understanding.
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Introduction to Contextual Embeddings

Advantages Over Static Embeddings:

• Captures polysemy by providing context-specific word meanings.
• Adapts to different domains and evolving language use without

retraining from scratch.
• Enhances performance across a wide array of NLP tasks.

Conclusion: Contextual embeddings mark a significant milestone in
NLP, offering nuanced and adaptable understanding of language, far
surpassing the capabilities of static embeddings.
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Introduction to ELMo (Embeddings from Language Models)

What is ELMo?

• ELMo, Peters et al. (2018) was developed by Allen Institute for AI.
• It stands for Embeddings from Language Models.

Key Features of ELMo:

• Deep Contextualization: ELMo considers the entire context of a
word by using the internal states of a bidirectional LSTM.

• Dynamic Word Representation: Each word’s representation is a
function of the entire sentence.

Architecture Overview: ELMo combines the representations of a
two-layer pretrained bidirectional LSTM internal states into downstream
tasks to outperfom current models.

28



Pre-training Steps of ELMo

Pre-training Procedure:

• Bidirectional Language Modeling:
• Forward LSTM: Predicts the next word from the past context.
• Backward LSTM: Predicts the previous word from the future context.

• Character Embeddings: Captures word morphology and manages
out-of-vocabulary words.

• Training on Large Corpus: Enhances understanding of language
structure by predicting surrounding words.

Objective: ELMo’s pre-training on a large corpus with bidirectional
context and character embeddings lays a robust foundation for nuanced
language understanding.
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Forward LM LSTM training

Forward LSTM

Architecture:

• One embedding layer.
• Two hidden layers.
• One softmax layer to predict next token. 30



Backward LM LSTM training

Backward LSTM

Architecture:

• One embedding layer.
• Two hidden layers.
• One softmax layer to predict previous token. 31



Final Embeddings

Final Embeddings

Architecture:

• We concatenate each layer together.
• We weight each of the layer to get the final embedding.
• The weights depend of the downstream task. 32



Utilizing Pre-trained LSTM in Downstream Tasks

Integration into Downstream Tasks:

• Feature Extraction: Use the output of the pre-trained LSTM layers
as features in a new model tailored to a specific task, such as
sentiment analysis or named entity recognition.

• Fine-tuning: Adjust the pre-trained LSTM weights slightly during
the training of the downstream task to better adapt the model to
the specific requirements of the task.

Downstream Task Architecture:

• Start with the pre-trained ELMo embeddings as the input layer.
• Add task-specific layers on top of the ELMo layers (e.g., additional

LSTM layers, dense layers...).
• The final output layer is designed according to the downstream task

(e.g., softmax for classification).
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Example: ELMo in Sentiment Analysis

ELMo embeddings can enhance the sentiment analysis models by
providing deep contextualized word representations.

Incorporation into Model (example):

• Input Layer: Start with ELMo embeddings for each token in the
input text.

• Additional Layers: Add a bi-directional LSTM layer to further
capture context not encapsulated by ELMo.

• Output Layer: A dense layer with softmax activation to classify the
sentiment as positive or negative.

• Train your model: The whole model with ELMo frozen or not !

Advantage: The use of ELMo transfers the nuances of language,
leading to a more accurate sentiment classification compared to models
without contextualized embeddings: 3.3% in absolute improvement.
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ELMo’s Impact on NLP Tasks

ELMo’s introduction marked a new era in NLP by
setting state-of-the-art (SOA) benchmarks across
multiple tasks simultaneously.
Remarkable Achievements:

• SOA in Six Benchmarks: ELMo established
new records in a range of NLP tasks.

• Double-Digit Improvements: Notably
increased performance by over 10% in four of
those tasks.

Transfer Learning with ELMo:

• Knowledge Acquisition: Gained from
pre-training on extensive datasets.

• Knowledge Transfer: Applied to enhance
task-specific models, demonstrating the power
of transfer learning in NLP.

Visualization of ELMo
generating embeddings

Credit: Pieters
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Conclusions on ELMO

Benefits of Using ELMo’s LSTM:

• Contextualized Understanding: Models become more aware of
the context within sentences, leading to better understanding and
predictions.

• Transfer Learning: Leveraging pre-trained models significantly
reduces the need for large labeled datasets for the target task.

• State-of-the-Art Results: Many tasks see improved performance
metrics when integrating pre-trained LSTMs from ELMo.
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Related Work in Contextual Embeddings

Several works have built upon and extended the concepts introduced by
ELMo, pushing the boundaries in various NLP tasks.

• ULM-Fit (Howard and Ruder, 2018): A model that employs
transfer learning specifically for text classification, setting new
benchmarks on six different tasks.

• Semi-supervised Sequence Tagging (Peters et al., 2017):
Improved named entity recognition (NER) performance on multiple
datasets by using bidirectional language models.

• Learned in Translation: Contextualized Word Vectors (McCann
et al., 2017): Achieved state-of-the-art results in translation tasks by
leveraging contextualized word vectors derived from an LSTM model
with an attention mechanism.

These works collectively demonstrate the growing impact of transfer
learning and contextual embeddings across a range of NLP applications. 37



Limitations of those Advanced NLP Models

Challenges in Cutting-Edge NLP: Models like ELMo and ULM-Fit
push the boundaries but encounter challenges:

• Data and Resources: Dependence on extensive datasets and
substantial computational power limits accessibility and applicability,
especially for under-resourced languages and domains.

• Model Complexity: The intricate nature of these models can
obscure interpretability, leading to the ’black-box’ issue and
challenges in model trust and fine-tuning.

• Real-World Application: Mastery over benchmarks doesn’t always
translate to real-world scenarios, where data can be noisy and
unpredictable.

Conclusion: The future of NLP lies in overcoming these hurdles, striving
for models that balance performance with efficiency, interpretability, and
broader applicability. 38



QA

Open Discussion

• Feel free to ask questions or share your thoughts about today’s
topics.

• Any insights, experiences, or perspectives you’d like to discuss are
welcome.
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Summary of Key Takeaways

• We explored static embeddings like Word2Vec, GloVe, and
FastText, and their role in establishing the foundation for current
NLP advancements.

• Static embeddings, while transformative, have limitations in
handling polysemy, dynamic context, and out-of-vocabulary words.

• Advanced NLP models like ELMo and ULM-Fit build upon static
embeddings, offering context-aware representations that better
capture the nuances of language.

• These advanced models set new benchmarks but face challenges
regarding data dependency, computational demands, and
generalization.

• Addressing the limitations of both static and advanced models is
crucial for the development of more efficient, interpretable, and
generalizable NLP solutions.
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