Advanced Methods in Natural Language Processing

Session 2: Neural Networks, Backpropagation & Recurrent Neural Networks

Arnault Gombert April 2025

Barcelona School of Economics

Introduction

Today's Focus: Understanding the Core of Neural Networks

- Neural Networks Basics: Exploring the structure and function of simple neural networks.
- Gradient Descent and Backpropagation: Unveiling how neural networks learn and optimize.

Advancing to Complex Models

- Recurrent Neural Networks (RNNs): Delving into the handling of sequential data.
- Long Short-Term Memory (LSTM) Networks: Understanding how LSTMs tackle the limitations of traditional RNNs.
- Language Models: Introducing and exploring basic language models.

Neural Networks

Introduction to Neural Networks

- Diverse Network Types: Neural Networks encompass various architectures, each suited to specific tasks.
 - Multi-layer Perceptrons (MLPs): Basic form of NNs.
 - Recurrent Neural Networks (RNNs): Ideal for sequential data like text (Rumelhart et al., 1986).
 - Convolutional Neural Networks (CNNs): Specialized in processing structured grid data like images (LeCun et al., 1989).
 - *Transformers*: NLP Revolution with attention mechanisms (Vaswani et al., 2017).
- Understanding the Basics: Before delving into complex models, it's crucial to grasp the foundational principles.
 - Avoiding the "black box" approach
 - Blind feature engineering without algorithmic understanding.
- Vanilla Neural Networks: Also known as single-layer backpropagation networks, these form the cornerstone of more complex architectures.

• **K-Class Classification**: With K targets $Y_k, k \in [1, K]$.

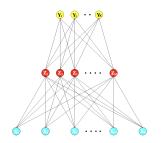


FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network.

- **K-Class Classification**: With K targets $Y_k, k \in [1, K]$.
- Hidden Units Z_m:

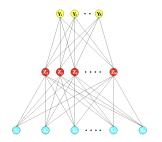


FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network.

- K-Class Classification: With K targets Y_k, k ∈ [1, K].
- Hidden Units Z_m:
 - Formed from a linear combination of inputs X_p.

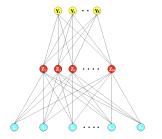


FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network.

- K-Class Classification: With K targets Y_k, k ∈ [1, K].
- Hidden Units Z_m:
 - Formed from a linear combination of inputs X_p.

•
$$Z_m = \sigma(\alpha_{0m} + \alpha_m^T X) \forall m \in [1, M].$$

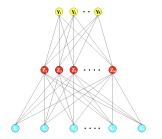


FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network.

- K-Class Classification: With K targets Y_k, k ∈ [1, K].
- Hidden Units Z_m:
 - Formed from a linear combination of inputs X_p.
 - $Z_m = \sigma(\alpha_{0m} + \alpha_m^T X) \forall m \in [1, M].$
- Linear Combination for *T_k*:

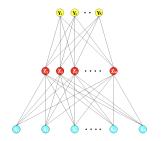


FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network

- K-Class Classification: With K targets Y_k, k ∈ [1, K].
- Hidden Units Z_m:
 - Formed from a linear combination of inputs X_p.
 - $Z_m = \sigma(\alpha_{0m} + \alpha_m^T X) \forall m \in [1, M].$
- Linear Combination for *T_k*:
 - $T_k = \beta_{0k} + \beta_k^T Z \forall k \in [1, K].$

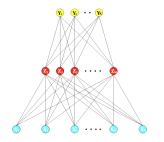


FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network

- K-Class Classification: With K targets Y_k, k ∈ [1, K].
- Hidden Units Z_m:
 - Formed from a linear combination of inputs X_p.
 - $Z_m = \sigma(\alpha_{0m} + \alpha_m^T X) \forall m \in [1, M].$
- Linear Combination for *T_k*:
 - $T_k = \beta_{0k} + \beta_k^T Z \forall k \in [1, K].$
- Output Function Y_k:

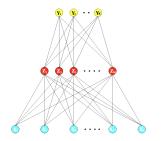


FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network.

- K-Class Classification: With K targets Y_k, k ∈ [1, K].
- Hidden Units Z_m:
 - Formed from a linear combination of inputs X_p.
 - $Z_m = \sigma(\alpha_{0m} + \alpha_m^T X) \forall m \in [1, M].$
- Linear Combination for T_k :
 - $T_k = \beta_{0k} + \beta_k^T Z \forall k \in [1, K].$
- Output Function Y_k:
 - Softmax function applied to T_k.

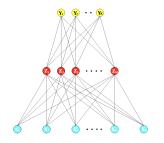


FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network.

- K-Class Classification: With K targets Y_k, k ∈ [1, K].
- Hidden Units Z_m:
 - Formed from a linear combination of inputs X_p.
 - $Z_m = \sigma(\alpha_{0m} + \alpha_m^T X) \forall m \in [1, M].$
- Linear Combination for T_k :
 - $T_k = \beta_{0k} + \beta_k^T Z \forall k \in [1, K].$
- Output Function Y_k:
 - Softmax function applied to T_k.

•
$$Y_k = \frac{e^{T_k}}{\sum_{l=1}^{K} e^{T_l}} \forall k \in [1, K].$$

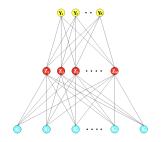


FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network

Vanilla Neural Networks: The Role of Non-Linearity

- Identity Function σ(v) = v: Reduces to a linear model; typically used in output layers for regression.
- Rectified Linear Unit (ReLU)
 σ(v) = max(0, v): Popular for deep
 networks.
- Sigmoid Function σ(v) = 1/(1+e^{-v}):
 Commonly used, depicted on the right.
- Hyperbolic Tangent σ(v) = tanh(v): Similar to sigmoid but ranges from -1 to 1.
- Others: Various options available in deep learning libraries like Keras.

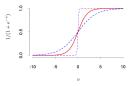


FIGURE 11.3. Plot of the sigmaid function $\sigma(v) = 1/(1+exp(-v))$ (red curve), commonly used in the hidden layer of a neural network. Included are $\sigma(sv)$ for $s = \frac{1}{3}$ (blue curve) and s = 10 (purple curve). The scale parameter s controls the activation rate, and we can see that large s amounts to a hard activation at v = 0. Note that $\sigma(s(v - v_0))$ shifts the activation threshold from 0 to v_0 .

Fitting the Vanilla Neural Network - Classification Problem

- Hidden Layer ($\forall m \text{ in } [1, M]$): $Z_m = \sigma(\alpha_{0m} + \alpha_m^T X)$
- Output Layer ($\forall k \text{ in } [1, K]$): $T_k = \beta_{0k} + \beta_k^T Z$
- Softmax Output ($\forall k \text{ in } [1, K]$): $Y_{k} = \frac{e^{T_{k}}}{e^{T_{k}}} = f_{k}(X)$

$$Y_k = \frac{e^{-\kappa}}{\sum_{l=1}^{K} e^{T_l}} = t_k(X)$$

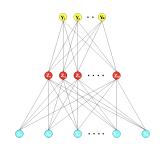


FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network.

Fitting the Vanilla Neural Network - Classification Problem

- Hidden Layer ($\forall m \text{ in } [1, M]$): $Z_m = \sigma(\alpha_{0m} + \alpha_m^T X)$
- Output Layer ($\forall k \text{ in } [1, K]$): $T_k = \beta_{0k} + \beta_k^T Z$
- Softmax Output ($\forall k \text{ in } [1, K]$): $Y_k = \frac{e^{T_k}}{\sum_{l=1}^{K} e^{T_l}} = f_k(X)$

Dimensionality and Loss Function

•
$$\alpha_{0m} \in \mathbb{R}^{M}, \ \alpha_m \in \mathbb{R}^{M \times p}, \ \beta_{0k} \in \mathbb{R}^{K}, \ \beta_k \in \mathbb{R}^{M \times K}.$$

- Total Weights to Optimize (θ):
 M(p+1) + K(M+1).
- $L(\theta) = -\sum_{k=1}^{K} y_k \log(f_k(x))$
- $L(\theta) = -\sum_{i=1}^{N} \sum_{k=1}^{K} y_{ik} \log(f_k(x_i))$

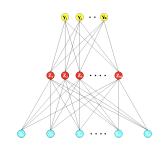


FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network.

Gradient Descent Algorithm

Introduction to Gradient Descent

 Popular Optimization Algorithm: Widely used for function optimization, for logistic regression or NNs.

Introduction to Gradient Descent

- Popular Optimization Algorithm: Widely used for function optimization, for logistic regression or NNs.
- Neural Network Optimization: As highlighted by Ruder (2020), it's the most common method for optimizing neural networks.

Introduction to Gradient Descent

- Popular Optimization Algorithm: Widely used for function optimization, for logistic regression or NNs.
- Neural Network Optimization: As highlighted by Ruder (2020), it's the most common method for optimizing neural networks.
- Widespread Implementation: Integral to many libraries like TensorFlow, Keras, PyTorch, and Caffe, often utilized as "black-boxes."

- Popular Optimization Algorithm: Widely used for function optimization, for logistic regression or NNs.
- Neural Network Optimization: As highlighted by Ruder (2020), it's the most common method for optimizing neural networks.
- Widespread Implementation: Integral to many libraries like TensorFlow, Keras, PyTorch, and Caffe, often utilized as "black-boxes."
- **Objective**: Minimizes loss function $L(\theta)$ parameterized by $\theta \in \mathbb{R}^d$.

- **Popular Optimization Algorithm**: Widely used for function optimization, for logistic regression or NNs.
- Neural Network Optimization: As highlighted by Ruder (2020), it's the most common method for optimizing neural networks.
- Widespread Implementation: Integral to many libraries like TensorFlow, Keras, PyTorch, and Caffe, often utilized as "black-boxes."
- **Objective**: Minimizes loss function $L(\theta)$ parameterized by $\theta \in \mathbb{R}^d$.
- Types of Gradient Descent:

- Popular Optimization Algorithm: Widely used for function optimization, for logistic regression or NNs.
- Neural Network Optimization: As highlighted by Ruder (2020), it's the most common method for optimizing neural networks.
- Widespread Implementation: Integral to many libraries like TensorFlow, Keras, PyTorch, and Caffe, often utilized as "black-boxes."
- **Objective**: Minimizes loss function $L(\theta)$ parameterized by $\theta \in \mathbb{R}^d$.
- Types of Gradient Descent:
 - Batch Gradient Descent (Vanilla): Uses the entire dataset for each update.

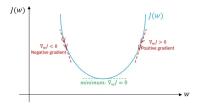
- **Popular Optimization Algorithm**: Widely used for function optimization, for logistic regression or NNs.
- Neural Network Optimization: As highlighted by Ruder (2020), it's the most common method for optimizing neural networks.
- Widespread Implementation: Integral to many libraries like TensorFlow, Keras, PyTorch, and Caffe, often utilized as "black-boxes."
- **Objective**: Minimizes loss function $L(\theta)$ parameterized by $\theta \in \mathbb{R}^d$.
- Types of Gradient Descent:
 - *Batch Gradient Descent (Vanilla)*: Uses the entire dataset for each update.
 - *Stochastic Gradient Descent*: Updates parameters for each training example.

- **Popular Optimization Algorithm**: Widely used for function optimization, for logistic regression or NNs.
- Neural Network Optimization: As highlighted by Ruder (2020), it's the most common method for optimizing neural networks.
- Widespread Implementation: Integral to many libraries like TensorFlow, Keras, PyTorch, and Caffe, often utilized as "black-boxes."
- **Objective**: Minimizes loss function $L(\theta)$ parameterized by $\theta \in \mathbb{R}^d$.
- Types of Gradient Descent:
 - *Batch Gradient Descent (Vanilla)*: Uses the entire dataset for each update.
 - *Stochastic Gradient Descent*: Updates parameters for each training example.
 - *Mini-batch Gradient Descent*: Strikes a balance using subsets of the dataset.

Update Rule:

$$\theta = \theta - \eta \nabla_{\theta} L(\theta)$$

with η as the **learning rate**.



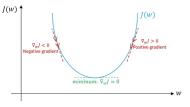
Credit: Imad Daburra

Update Rule:

 $\theta = \theta - \eta \nabla_{\theta} L(\theta)$

with η as the **learning rate**.

Direction of Update: Updates parameters in the **opposite direction** to the gradient of the objective function $\nabla_{\theta} L(\theta)$.



Credit: Imad Daburra

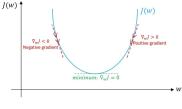
Update Rule:

 $\theta = \theta - \eta \nabla_{\theta} L(\theta)$

with η as the **learning rate**.

Direction of Update: Updates parameters in the **opposite direction** to the gradient of the objective function $\nabla_{\theta} L(\theta)$.

Analogy: Similar to descending a mountain to reach a valley, considering the slope to find the optimal path.



Credit: Imad Daburra

Update Rule:

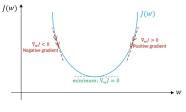
 $\theta = \theta - \eta \nabla_{\theta} L(\theta)$

with η as the **learning rate**.

Direction of Update: Updates parameters in the **opposite direction** to the gradient of the objective function $\nabla_{\theta} L(\theta)$.

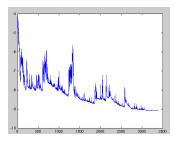
Analogy: Similar to descending a mountain to reach a valley, considering the slope to find the optimal path.

Limitation: Requires processing **the entire dataset** for each update, problematic for large datasets due to memory constraints.



Credit: Imad Daburra

Update for Each Observation: Applies the gradient descent update rule for each observation individually, chosen randomly.

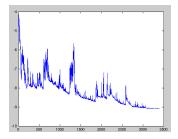


Credit: Wikipedia

Update for Each Observation: Applies the gradient descent update rule for each observation individually, chosen randomly.

Update Rule:

$$\theta = \theta - \eta \nabla_{\theta} L(\theta, x_i, y_i)$$



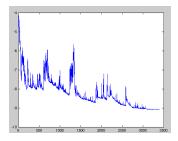
Credit: Wikipedia

Update for Each Observation: Applies the gradient descent update rule for each observation individually, chosen randomly.

Update Rule:

$$\theta = \theta - \eta \nabla_{\theta} L(\theta, x_i, y_i)$$

Advantages: Faster updates, suitable for online learning, and better exploration of minima compared to batch gradient descent.



Credit: Wikipedia

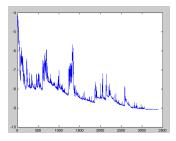
Update for Each Observation: Applies the gradient descent update rule for each observation individually, chosen randomly.

Update Rule:

$$\theta = \theta - \eta \nabla_{\theta} L(\theta, x_i, y_i)$$

Advantages: Faster updates, suitable for online learning, and better exploration of minima compared to batch gradient descent.

Challenge: Tendency to oscillate around or even overshoot minima. Reducing η over time can mitigate this issue.



Credit: Wikipedia

Mini-batch Gradient Descent

Combining the Best of Both Worlds! Update Rule:

 $\theta = \theta - \eta \nabla_{\theta} L(\theta, x_{i:i+n}, y_{i:i+n})$

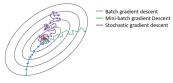
Credit: Imad Daburra

Mini-batch Gradient Descent

Combining the Best of Both Worlds! Update Rule:

 $\theta = \theta - \eta \nabla_{\theta} L(\theta, x_{i:i+n}, y_{i:i+n})$

Reduced Variance: Balances the variance of updates: more stable convergence than SGD.



Credit: Imad Daburra

Mini-batch Gradient Descent

Combining the Best of Both Worlds! Update Rule:

 $\theta = \theta - \eta \nabla_{\theta} L(\theta, x_{i:i+n}, y_{i:i+n})$

Reduced Variance: Balances the variance of updates: more stable convergence than SGD.

Efficiency: Tends to be faster than Batch Gradient Descent, particularly for large datasets.



Credit: Imad Daburra

Mini-batch Gradient Descent

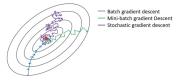
Combining the Best of Both Worlds! Update Rule:

 $\theta = \theta - \eta \nabla_{\theta} L(\theta, x_{i:i+n}, y_{i:i+n})$

Reduced Variance: Balances the variance of updates: more stable convergence than SGD.

Efficiency: Tends to be faster than Batch Gradient Descent, particularly for large datasets.

Widely Adopted: Often the preferred choice in practical applications and deep learning frameworks.



Credit: Imad Daburra

Optimizing Learning Rate:

- Optimizing Learning Rate:
 - Too Low: Slow convergence.

- Optimizing Learning Rate:
 - Too Low: Slow convergence.
 - Too High: May lead to divergence.

- Optimizing Learning Rate:
 - Too Low: Slow convergence.
 - Too High: May lead to divergence.
- Adaptive Learning Rates:

- Optimizing Learning Rate:
 - Too Low: Slow convergence.
 - *Too High*: May lead to divergence.
- Adaptive Learning Rates:
 - Dynamic Adjustments: Varying the rate during exploration and refinement phases.

- Optimizing Learning Rate:
 - Too Low: Slow convergence.
 - *Too High*: May lead to divergence.
- Adaptive Learning Rates:
 - *Dynamic Adjustments*: Varying the rate during exploration and refinement phases.
 - Examples: Momentum (Qian, 1999), Nesterov accelerated gradient (Nesterov, 1983).

- Optimizing Learning Rate:
 - Too Low: Slow convergence.
 - *Too High*: May lead to divergence.
- Adaptive Learning Rates:
 - *Dynamic Adjustments*: Varying the rate during exploration and refinement phases.
 - Examples: Momentum (Qian, 1999), Nesterov accelerated gradient (Nesterov, 1983).
- Parameter-Specific Learning Rates:

- Optimizing Learning Rate:
 - Too Low: Slow convergence.
 - *Too High*: May lead to divergence.
- Adaptive Learning Rates:
 - *Dynamic Adjustments*: Varying the rate during exploration and refinement phases.
 - Examples: Momentum (Qian, 1999), Nesterov accelerated gradient (Nesterov, 1983).
- Parameter-Specific Learning Rates:
 - Individual learning rates for different parameters.

- Optimizing Learning Rate:
 - Too Low: Slow convergence.
 - *Too High*: May lead to divergence.
- Adaptive Learning Rates:
 - *Dynamic Adjustments*: Varying the rate during exploration and refinement phases.
 - Examples: Momentum (Qian, 1999), Nesterov accelerated gradient (Nesterov, 1983).
- Parameter-Specific Learning Rates:
 - Individual learning rates for different parameters.
 - Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.), Adam (Kingma et al., 2015).

- Optimizing Learning Rate:
 - Too Low: Slow convergence.
 - *Too High*: May lead to divergence.
- Adaptive Learning Rates:
 - *Dynamic Adjustments*: Varying the rate during exploration and refinement phases.
 - Examples: Momentum (Qian, 1999), Nesterov accelerated gradient (Nesterov, 1983).
- Parameter-Specific Learning Rates:
 - Individual learning rates for different parameters.
 - Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.), Adam (Kingma et al., 2015).
- Non-Convex Functions:

Optimizing Learning Rate:

- Too Low: Slow convergence.
- *Too High*: May lead to divergence.
- Adaptive Learning Rates:
 - *Dynamic Adjustments*: Varying the rate during exploration and refinement phases.
 - Examples: Momentum (Qian, 1999), Nesterov accelerated gradient (Nesterov, 1983).
- Parameter-Specific Learning Rates:
 - Individual learning rates for different parameters.
 - Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.), Adam (Kingma et al., 2015).

Non-Convex Functions:

• Gradient descent can struggle with complex, non-convex functions typical in deep neural networks.

Optimizing Learning Rate:

- Too Low: Slow convergence.
- *Too High*: May lead to divergence.
- Adaptive Learning Rates:
 - *Dynamic Adjustments*: Varying the rate during exploration and refinement phases.
 - Examples: Momentum (Qian, 1999), Nesterov accelerated gradient (Nesterov, 1983).
- Parameter-Specific Learning Rates:
 - Individual learning rates for different parameters.
 - Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.), Adam (Kingma et al., 2015).

Non-Convex Functions:

- Gradient descent can struggle with complex, non-convex functions typical in deep neural networks.
- Issue: Getting trapped in local minima.

Loss Function:

$$L(\theta) = -\sum_{k=1}^{K} \sum_{i=1}^{N} y_{ik} \log(f_k(x_i))$$

Loss Function:

$$L(\theta) = -\sum_{k=1}^{K} \sum_{i=1}^{N} y_{ik} \log(f_k(x_i))$$

Optimization Algorithm:

$$\theta = \theta - \eta \nabla_{\theta} L(\theta, x_{i:i+n}, y_{i:i+n})$$

Loss Function:

$$L(\theta) = -\sum_{k=1}^{K} \sum_{i=1}^{N} y_{ik} \log(f_k(x_i))$$

Optimization Algorithm:

$$\theta = \theta - \eta \nabla_{\theta} L(\theta, x_{i:i+n}, y_{i:i+n})$$

Parameter Dimensions:

Loss Function:

$$L(\theta) = -\sum_{k=1}^{K} \sum_{i=1}^{N} y_{ik} \log(f_k(x_i))$$

Optimization Algorithm:

$$\theta = \theta - \eta \nabla_{\theta} L(\theta, x_{i:i+n}, y_{i:i+n})$$

Parameter Dimensions:

•
$$\alpha_{0m} \in \mathbb{R}^M$$
, $\alpha_m \in \mathbb{R}^{M \times p}$

Loss Function:

$$L(\theta) = -\sum_{k=1}^{K} \sum_{i=1}^{N} y_{ik} \log(f_k(x_i))$$

Optimization Algorithm:

$$\theta = \theta - \eta \nabla_{\theta} L(\theta, x_{i:i+n}, y_{i:i+n})$$

- Parameter Dimensions:
 - $\alpha_{0m} \in \mathbb{R}^M$, $\alpha_m \in \mathbb{R}^{M \times p}$
 - $\beta_0 \in \mathbb{R}^K$, $\beta_k \in \mathbb{R}^{M \times K}$

Loss Function:

$$L(\theta) = -\sum_{k=1}^{K} \sum_{i=1}^{N} y_{ik} \log(f_k(x_i))$$

Optimization Algorithm:

$$\theta = \theta - \eta \nabla_{\theta} L(\theta, x_{i:i+n}, y_{i:i+n})$$

- Parameter Dimensions:
 - $\alpha_{0m} \in \mathbb{R}^M$, $\alpha_m \in \mathbb{R}^{M \times p}$
 - $\beta_0 \in \mathbb{R}^K$, $\beta_k \in \mathbb{R}^{M \times K}$
- Understanding the Chain Rule:

$$\frac{\partial f(x)}{\partial z} = \frac{\partial f(x)}{\partial t} \frac{\partial t}{\partial z}$$

Key to computing gradients for backpropagation.

Classification Problem Formulation:

• For each hidden unit *m* in [1, *M*]: $Z_m = \sigma(\alpha_{0m} + \alpha_m^T X)$

- For each hidden unit *m* in [1, *M*]: $Z_m = \sigma(\alpha_{0m} + \alpha_m^T X)$
- For each output unit k in [1, K]: $T_k = \beta_{0k} + \beta_k^T Z$

Application to a Single-Layer Neural Network

- For each hidden unit *m* in [1, *M*]: $Z_m = \sigma(\alpha_{0m} + \alpha_m^T X)$
- For each output unit k in [1, K]: $T_k = \beta_{0k} + \beta_k^T Z$

• For the softmax output:
$$Y_k = \frac{e^{T_k}}{\sum_{l=1}^{K} e^{T_l}} = g_k(T) = f_k(X)$$

Application to a Single-Layer Neural Network

- For each hidden unit *m* in [1, *M*]: $Z_m = \sigma(\alpha_{0m} + \alpha_m^T X)$
- For each output unit k in [1, K]: $T_k = \beta_{0k} + \beta_k^T Z$
- For the softmax output: $Y_k = \frac{e^{T_k}}{\sum_{l=1}^{K} e^{T_l}} = g_k(T) = f_k(X)$
- Loss function:

$$L(\theta) = -\sum_{k=1}^{K} \sum_{i=1}^{N} y_{ik} \log(f_k(x_i))$$

Application to a Single-Layer Neural Network

- For each hidden unit *m* in [1, *M*]: $Z_m = \sigma(\alpha_{0m} + \alpha_m^T X)$
- For each output unit k in [1, K]: $T_k = \beta_{0k} + \beta_k^T Z$
- For the softmax output: $Y_k = \frac{e^{T_k}}{\sum_{l=1}^{K} e^{T_l}} = g_k(T) = f_k(X)$
- Loss function:

$$L(\theta) = -\sum_{k=1}^{K} \sum_{i=1}^{N} y_{ik} \log(f_k(x_i))$$

Classification Problem Formulation:

- For each hidden unit *m* in [1, *M*]: $Z_m = \sigma(\alpha_{0m} + \alpha_m^T X)$
- For each output unit k in [1, K]: $T_k = \beta_{0k} + \beta_k^T Z$
- For the softmax output: $Y_k = \frac{e^{T_k}}{\sum_{l=1}^{K} e^{T_l}} = g_k(T) = f_k(X)$
- Loss function:

$$L(\theta) = -\sum_{k=1}^{K} \sum_{i=1}^{N} y_{ik} \log(f_k(x_i))$$

Applying the Chain Rule to Compute Gradients for β_k :

Gradient of the loss function with respect to β_k:

$$\frac{\partial L(\theta)}{\partial \beta_k} = -\frac{\partial}{\partial \beta_k} \sum_{j=1}^K \sum_{i=1}^N y_{ij} \log(f_j(x_i))$$

Derivatives of β_k - Part 1

$$\begin{aligned} \frac{\partial L(\theta)}{\partial \beta_k} &= -\sum_{j=1}^{K} Y_j \frac{\partial \log(\hat{Y}_j)}{\partial \beta_k} \\ &= -\sum_{j=1}^{K} Y_j \left(\frac{\partial T_j}{\partial \beta_k} - \frac{\partial \log(\sum_{l=1}^{K} e^{T_l})}{\partial \beta_k} \right) \\ &= -\sum_{j=1}^{K} Y_j \left(\mathbf{1}_{j=k} Z^T - \frac{e^{T_k} Z^T}{\sum_{l=1}^{K} e^{T_l}} \right) \\ &= -\sum_{j=1}^{K} Y_j \left(\mathbf{1}_{j=k} Z^T - \hat{Y}_k Z^T \right) \end{aligned}$$

14

Derivatives of β_k - Part 2

$$\frac{\partial L(\theta)}{\partial \beta_k} = -\sum_{j=1}^K Y_j \left(\mathbf{1}_{j=k} Z^T - \hat{Y}_k Z^T \right)$$
$$= \left(\sum_{j=1}^K Y_j \hat{Y}_k - \sum_{j=1}^K Y_j \mathbf{1}_{j=k} \right) Z^T$$
$$= \left(\hat{Y}_k \sum_{j=1}^K Y_j - Y_k \right) Z^T$$
$$= \left(\hat{Y}_k - Y_k \right) Z^T$$
$$\beta_k^{r+1} = \beta_k^r - \eta \frac{\partial L(\theta)}{\partial \beta_k}$$
$$\beta_k^{r+1} = \beta_k^r - \eta \left(\hat{Y}_k - Y_k \right) Z^T$$

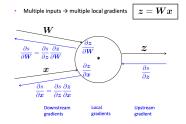
Backpropagation: Understanding the Chain Rule

The Chain Rule in Neural Networks:

• Fundamental to backpropagation:

$$\frac{\partial f(x)}{\partial z} = \frac{\partial f(x)}{\partial s} \frac{\partial s}{\partial z}$$

- downstream gradient = upstream gradient × local gradient.
- This principle encounters challenges:
 - Vanishing Gradient: Gradients become very small, hindering learning.
 - *Exploding Gradient*: Gradients grow too large, leading to unstable learning.
- It can prevent the model from learning!



Credit: Christopher Manning

Understanding Vanishing Gradient

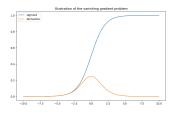
- When gradients become increasingly small as they are propagated back through the layers.
- Especially in networks with many layers.

Illustrative Example:

- Consider a deep NN with sigmoid.
- Sigmoid gradients in (0, 0.25].
- Multiplying many such small values (chain rule!) makes the gradient increasingly smaller.

Consequence:

 Lower layers of the network learn very slowly, making training ineffective.



Sigmoid and its derivative

Understanding Exploding Gradient

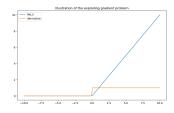
- When gradients become excessively large: model weights oscillate wildly.
- Often seen in NN with improper initialization or high learning rates.

Illustrative Example:

- NN with large weight values and high learning rates.
- Small changes in input lead to large changes in the output.
- Gradients can grow exponentially during backpropagation through layers.

Consequence:

 Results in unstable training: weights diverge and NN fail to converge.



ReLU and its derivative

Complex Models

Recurrent Neural Networks

Overview of RNNs:

- RNNs, introduced by Rumelhart et al. (1986), are powerful networks for sequential data processing.
- Key Models: Vanilla RNNs and Long Short-Term Memory (LSTM) networks.
- State-of-the-art in various NLP tasks (e.g., machine translation, text generation) before the advent of Transformers and BERT models.

Motivation for Using RNNs:

- Sequential Data Processing:
 - Traditional feed-forward networks are not optimized for sequential data like text or time series.
 - RNNs are designed to handle data where variables are interlinked sequentially.

Example - Text Analysis:

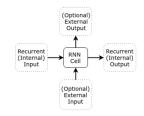
- For a word like "mathematics," tokenized as "m, a, t, h, e, m, a, t, i, c, s," RNNs can capture the sequence's inherent dependencies.
- This sequential understanding is crucial for tasks like language modeling and translation.

Recurrent Neural Networks -General

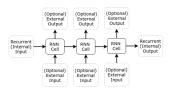
What is a Recurrent Neural Network?

Characteristics of RNNs:

 Composed of identical units resembling feed-forward neural networks.



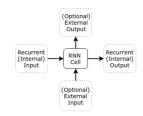
Single RNN Cell



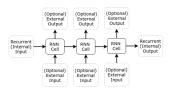
What is a Recurrent Neural Network?

Characteristics of RNNs:

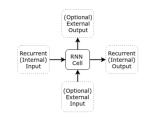
- Composed of identical units resembling feed-forward neural networks.
- Inputs for Each Cell:



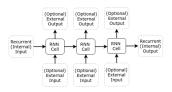
Single RNN Cell



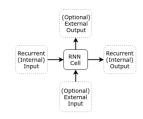
- Composed of identical units resembling feed-forward neural networks.
- Inputs for Each Cell:
 - External Input (optional): For ex., characters in a word like p,h,o,n,e.



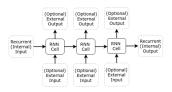
Single RNN Cell



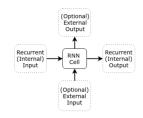
- Composed of identical units resembling feed-forward neural networks.
- Inputs for Each Cell:
 - *External Input* (optional): For ex., characters in a word like *p*,*h*,*o*,*n*,*e*.
 - Internal Input: The state output from the previous cell.



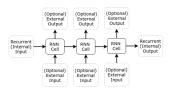
Single RNN Cell



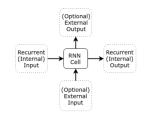
- Composed of identical units resembling feed-forward neural networks.
- Inputs for Each Cell:
 - *External Input* (optional): For ex., characters in a word like *p*,*h*,*o*,*n*,*e*.
 - Internal Input: The state output from the previous cell.
- Outputs for Each Cell:



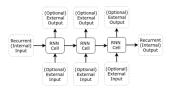
Single RNN Cell



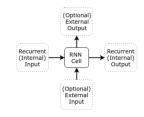
- Composed of identical units resembling feed-forward neural networks.
- Inputs for Each Cell:
 - *External Input* (optional): For ex., characters in a word like *p*,*h*,*o*,*n*,*e*.
 - Internal Input: The state output from the previous cell.
- Outputs for Each Cell:
 - *External Output*: Can be used or ignored depending on the application.



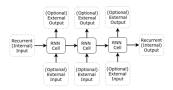
Single RNN Cell



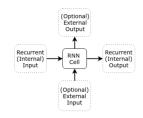
- Composed of identical units resembling feed-forward neural networks.
- Inputs for Each Cell:
 - *External Input* (optional): For ex., characters in a word like *p*,*h*,*o*,*n*,*e*.
 - Internal Input: The state output from the previous cell.
- Outputs for Each Cell:
 - *External Output*: Can be used or ignored depending on the application.
 - Internal Output: The state passed to the next cell.



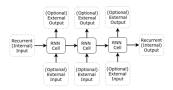
Single RNN Cell



- Composed of identical units resembling feed-forward neural networks.
- Inputs for Each Cell:
 - *External Input* (optional): For ex., characters in a word like *p*,*h*,*o*,*n*,*e*.
 - Internal Input: The state output from the previous cell.
- Outputs for Each Cell:
 - *External Output*: Can be used or ignored depending on the application.
 - Internal Output: The state passed to the next cell.
- Functions by passing states from one cell to the next in a sequence.



Single RNN Cell

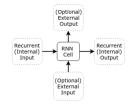


Mathematical Formulation:

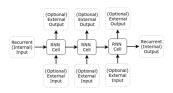
$$\begin{pmatrix} s_t \\ o_t \end{pmatrix} = f\left(\begin{pmatrix} s_{t-1} \\ x_t \end{pmatrix} \right)$$

Where:

 s_t and s_{t-1} are the current and previous states, respectively.



Single RNN Cell

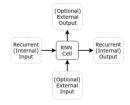


Mathematical Formulation:

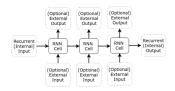
$$\begin{pmatrix} s_t \\ o_t \end{pmatrix} = f\left(\begin{pmatrix} s_{t-1} \\ x_t \end{pmatrix} \right)$$

Where:

- s_t and s_{t-1} are the current and previous states, respectively.
- o_t is the output at time t.



Single RNN Cell

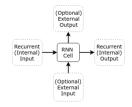


Mathematical Formulation:

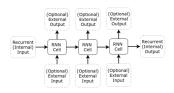
$$\begin{pmatrix} s_t \\ o_t \end{pmatrix} = f\left(\begin{pmatrix} s_{t-1} \\ x_t \end{pmatrix} \right)$$

Where:

- s_t and s_{t-1} are the current and previous states, respectively.
- *o_t* is the output at time *t*.
- *x_t* is the current input (optional).



Single RNN Cell

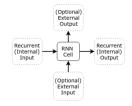


Mathematical Formulation:

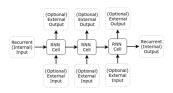
$$\begin{pmatrix} s_t \\ o_t \end{pmatrix} = f\left(\begin{pmatrix} s_{t-1} \\ x_t \end{pmatrix} \right)$$

Where:

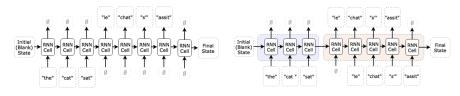
- s_t and s_{t-1} are the current and previous states, respectively.
- o_t is the output at time t.
- *x_t* is the current input (optional).
- *f* represents the recurrent function, defining how the next state and output are computed.



Single RNN Cell



- RNNs are particularly effective in sequence-to-sequence tasks like language translation.
- They process sequential inputs and generate sequential outputs, capturing the nuances of language patterns.



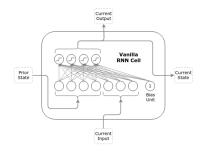
RNN for Translation - Example 1 RNN for Translation - Example 2 Credit: R2Rt blog

Vanilla Recurrent Neural Network

Characteristics of the Vanilla RNN:

• Features a single layer with identical current output and current state.

Mathematical Description:

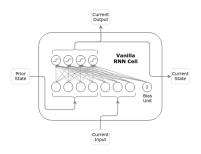


The Vanilla RNN.

Characteristics of the Vanilla RNN:

- Features a single layer with identical current output and current state.
- Prior and current states have the same dimension.

Mathematical Description:



The Vanilla RNN.

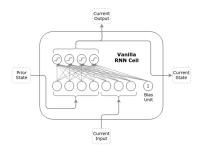
Characteristics of the Vanilla RNN:

- Features a single layer with identical current output and current state.
- Prior and current states have the same dimension.

Mathematical Description:

State Update:

 $s_t = \phi(Ws_{t-1} + Ux_t + b)$



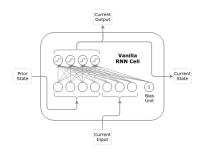
The Vanilla RNN.

Characteristics of the Vanilla RNN:

- Features a single layer with identical current output and current state.
- Prior and current states have the same dimension.

Mathematical Description:

- State Update:
 - $s_t = \phi(Ws_{t-1} + Ux_t + b)$
- Activation Function: ϕ



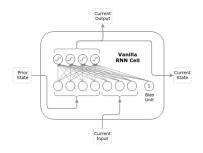
The Vanilla RNN.

Characteristics of the Vanilla RNN:

- Features a single layer with identical current output and current state.
- Prior and current states have the same dimension.

Mathematical Description:

- State Update:
 - $s_t = \phi(Ws_{t-1} + Ux_t + b)$
- Activation Function: ϕ
- Dimensions: $s_t, s_{t-1} \in \mathbb{R}^n$, $x_t \in \mathbb{R}^m$



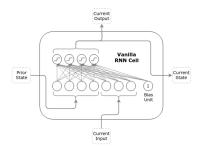
The Vanilla RNN.

Characteristics of the Vanilla RNN:

- Features a single layer with identical current output and current state.
- Prior and current states have the same dimension.

Mathematical Description:

- State Update:
 - $s_t = \phi(Ws_{t-1} + Ux_t + b)$
- Activation Function: ϕ
- Dimensions: $s_t, s_{t-1} \in \mathbb{R}^n$, $x_t \in \mathbb{R}^m$
- Weights: $W \in \mathbb{R}^{n \times n}$, $U \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$



• **State Transformation**: Information (*s*_t) changes from one state to another, potentially losing key information from the distant past.

- State Transformation: Information (*s*_t) changes from one state to another, potentially losing key information from the distant past.
- Dual Learning Challenge:

- **State Transformation**: Information (*s*_t) changes from one state to another, potentially losing key information from the distant past.
- Dual Learning Challenge:
 - Learning to **read** the previous state.

- **State Transformation**: Information (*s*_t) changes from one state to another, potentially losing key information from the distant past.
- Dual Learning Challenge:
 - Learning to **read** the previous state.
 - Learning to **use** the current state effectively.

- State Transformation: Information (*s*_t) changes from one state to another, potentially losing key information from the distant past.
- Dual Learning Challenge:
 - Learning to **read** the previous state.
 - Learning to **use** the current state effectively.
- Known as the *degradation problem* (He et al., 2015).

- State Transformation: Information (*s*_t) changes from one state to another, potentially losing key information from the distant past.
- Dual Learning Challenge:
 - Learning to **read** the previous state.
 - Learning to **use** the current state effectively.
- Known as the *degradation problem* (He et al., 2015).

- State Transformation: Information (*s*_t) changes from one state to another, potentially losing key information from the distant past.
- Dual Learning Challenge:
 - Learning to **read** the previous state.
 - Learning to **use** the current state effectively.
- Known as the *degradation problem* (He et al., 2015).

Exploding Gradients: Can prevent model training; mitigated by limiting gradient values (Mikolov, 2012).

- State Transformation: Information (*s*_t) changes from one state to another, potentially losing key information from the distant past.
- Dual Learning Challenge:
 - Learning to **read** the previous state.
 - Learning to **use** the current state effectively.
- Known as the *degradation problem* (He et al., 2015).

Exploding Gradients: Can prevent model training; mitigated by limiting gradient values (Mikolov, 2012). **Vanishing Gradients**:

• Challenge in learning long-term dependencies.

- State Transformation: Information (*s*_t) changes from one state to another, potentially losing key information from the distant past.
- Dual Learning Challenge:
 - Learning to **read** the previous state.
 - Learning to **use** the current state effectively.
- Known as the *degradation problem* (He et al., 2015).

Exploding Gradients: Can prevent model training; mitigated by limiting gradient values (Mikolov, 2012). **Vanishing Gradients**:

- Challenge in learning long-term dependencies.
- Mitigation strategies: regularization and specific weight initialization (Pascanu et al., 2013; Xavier-Glorot, Glorot and Bengio, 2010).

Long Short Term Memory

• **Persistent Memory**: How to retain important information through time steps?

- **Persistent Memory**: How to retain important information through time steps?
 - Solution: Introduce a memory mechanism by "writing down" information (Hochreiter & Schmidhuber, 1997).

- **Persistent Memory**: How to retain important information through time steps?
 - Solution: Introduce a memory mechanism by "writing down" information (Hochreiter & Schmidhuber, 1997).
 - Instead of replacing states, the model incrementally updates (writes) them: $s_{t+1} = s_t + \Delta s_{t+1}$.

- **Persistent Memory**: How to retain important information through time steps?
 - Solution: Introduce a memory mechanism by "writing down" information (Hochreiter & Schmidhuber, 1997).
 - Instead of replacing states, the model incrementally updates (writes) them: $s_{t+1} = s_t + \Delta s_{t+1}$.
- Selective Memory Updates:

- **Persistent Memory**: How to retain important information through time steps?
 - Solution: Introduce a memory mechanism by "writing down" information (Hochreiter & Schmidhuber, 1997).
 - Instead of replacing states, the model incrementally updates (writes) them: $s_{t+1} = s_t + \Delta s_{t+1}$.
- Selective Memory Updates:
 - Challenge: Ensuring that only relevant changes are captured.

- **Persistent Memory**: How to retain important information through time steps?
 - Solution: Introduce a memory mechanism by "writing down" information (Hochreiter & Schmidhuber, 1997).
 - Instead of replacing states, the model incrementally updates (writes) them: $s_{t+1} = s_t + \Delta s_{t+1}$.
- Selective Memory Updates:
 - Challenge: Ensuring that only relevant changes are captured.
 - Selection Mechanisms:

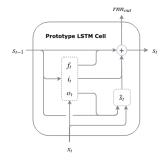
- **Persistent Memory**: How to retain important information through time steps?
 - Solution: Introduce a memory mechanism by "writing down" information (Hochreiter & Schmidhuber, 1997).
 - Instead of replacing states, the model incrementally updates (writes) them: $s_{t+1} = s_t + \Delta s_{t+1}$.
- Selective Memory Updates:
 - Challenge: Ensuring that only relevant changes are captured.
 - Selection Mechanisms:
 - Write Gate: Determines what to update in the memory.

- **Persistent Memory**: How to retain important information through time steps?
 - Solution: Introduce a memory mechanism by "writing down" information (Hochreiter & Schmidhuber, 1997).
 - Instead of replacing states, the model incrementally updates (writes) them: $s_{t+1} = s_t + \Delta s_{t+1}$.
- Selective Memory Updates:
 - Challenge: Ensuring that only relevant changes are captured.
 - Selection Mechanisms:
 - Write Gate: Determines what to update in the memory.
 - **Read Gate**: Controls what part of the memory to consider for the current output.

- **Persistent Memory**: How to retain important information through time steps?
 - Solution: Introduce a memory mechanism by "writing down" information (Hochreiter & Schmidhuber, 1997).
 - Instead of replacing states, the model incrementally updates (writes) them: $s_{t+1} = s_t + \Delta s_{t+1}$.
- Selective Memory Updates:
 - Challenge: Ensuring that only relevant changes are captured.
 - Selection Mechanisms:
 - Write Gate: Determines what to update in the memory.
 - **Read Gate**: Controls what part of the memory to consider for the current output.
 - Forget Gate: Decides which parts of the memory may no longer be relevant.

LSTM Gate Functions:

Write Gate (*i_t*): Determines new information to be stored in the cell state. *i_t* = σ(W_is_{t-1} + U_ix_t + b_i)

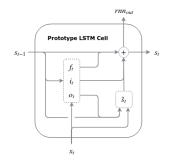


figurePrototype LSTM Cell. Credit: R2Rt blog

LSTM Gate Functions:

- Write Gate (i_t): Determines new information to be stored in the cell state. i_t = σ(W_is_{t-1} + U_ix_t + b_i)
- Read Gate (o_t): Controls what to output based on cell state.

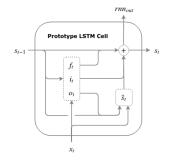
 $o_t = \sigma(W_o s_{t-1} + U_o x_t + b_o)$



figurePrototype LSTM Cell. Credit: R2Rt blog

LSTM Gate Functions:

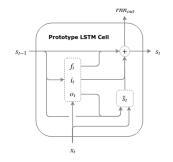
- Write Gate (i_t): Determines new information to be stored in the cell state. i_t = σ(W_is_{t-1} + U_ix_t + b_i)
- Read Gate (o_t): Controls what to output based on cell state.
 o_t = σ(W_os_{t-1} + U_ox_t + b_o)
- Forget Gate (f_t): Decides what to discard from the cell state.
 f_t = σ(W_fs_{t-1} + U_fx_t + b_f)



figurePrototype LSTM Cell. Credit: R2Rt blog

LSTM Gate Functions:

- Write Gate (i_t): Determines new information to be stored in the cell state. i_t = σ(W_is_{t-1} + U_ix_t + b_i)
- Read Gate (o_t): Controls what to output based on cell state.
 o_t = σ(W_os_{t-1} + U_ox_t + b_o)
- Forget Gate (f_t): Decides what to discard from the cell state.
 f_t = σ(W_fs_{t-1} + U_fx_t + b_f)
- Cell State Update:

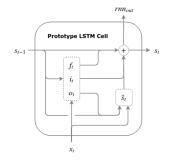


figurePrototype LSTM Cell. Credit: R2Rt blog

LSTM Gate Functions:

- Write Gate (i_t): Determines new information to be stored in the cell state. i_t = σ(W_is_{t-1} + U_ix_t + b_i)
- Read Gate (o_t): Controls what to output based on cell state.
 o_t = σ(W_os_{t-1} + U_ox_t + b_o)
- Forget Gate (f_t): Decides what to discard from the cell state.
 f_t = σ(W_fs_{t-1} + U_fx_t + b_f)
- Cell State Update:
 - New candidate values:

 $\tilde{s}_t = \phi(W_c(o_t \odot s_{t-1}) + U_c x_t + b_c)$



figurePrototype LSTM Cell. Credit: R2Rt blog

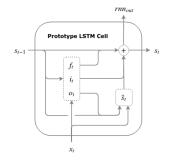
LSTM Gate Functions:

- Write Gate (i_t): Determines new information to be stored in the cell state. i_t = σ(W_is_{t-1} + U_ix_t + b_i)
- Read Gate (o_t): Controls what to output based on cell state.
 o_t = σ(W_os_{t-1} + U_ox_t + b_o)
- Forget Gate (f_t): Decides what to discard from the cell state.
 f_t = σ(W_fs_{t-1} + U_fx_t + b_f)
- Cell State Update:
 - New candidate values:

$$\tilde{s}_t = \phi(W_c(o_t \odot s_{t-1}) + U_c x_t + b_c)$$

Final cell state:

$$s_t = f_t \odot s_{t-1} + i_t \odot \tilde{s}_t$$



figurePrototype LSTM Cell. Credit: R2Rt blog

State-of-the-Art Applications of LSTM (or extentions)

1. Sentiment Analysis:

- LSTM networks, often in combination with word embeddings, have set new benchmarks in sentiment analysis tasks.
- SST-2 dataset (Radford et al., 2017), IMDb (Gray et al., 2017)
- 2. Machine Translation (MT):
 - LSTM-based models were pivotal in advancing the performance of neural machine translation systems.
 - English German (Luong et al., 2015), English-French (Cho et al., 2014)

3. Language Modelling:

- LSTMs have been successfully applied in language modelling, reducing text perplexity substantially.
- WikiText-103 dataset (Rae et al., 2018), TreeBank dataset (Aharoni et al., 2015)

Generating a Classificaiton model with LSTM architecture

Using Python's keras library to apply a LSTM-based model.

Python Code, source: Keras

```
import numpy as np
import keras
from keras import layers
max_features = 20000  # Only consider the top 20k words
maxlen = 200  # Only consider the first 200 words of each movie review
```

LSTM for IMDb classification (2/3)

```
# Input for variable-length sequences of integers
inputs = keras.Input(shape=(None,), dtype="int32")
# Embed each integer in a 128-dimensional vector
x = layers.Embedding(max_features, 128)(inputs)
# Add 2 bidirectional LSTMs
x = layers.Bidirectional(layers.LSTM(64, return_sequences=True))(x)
x = layers.Bidirectional(layers.LSTM(64))(x)
# Add a classifier
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.summary()
```

Model: "functional_1"

Layer (type)	Output Shape	Param #
<pre>input_layer (InputLayer)</pre>	(None, None)	0
embedding (Embedding)	(None, None, 128)	2,560,000
bidirectional (Bidirectional)	(None, None, 128)	98,816
bidirectional_1 (Bidirectional)	(None, 128)	98,816
dense (Dense)	(None, 1)	129

LSTM for IMDb classification (3/3)

Python Code to train, source: Keras

```
(x_train, y_train), (x_val, y_val) = keras.datasets.imdb.load_data(
num words=max features
# Use pad sequence to standardize sequence length:
# this will truncate sequences longer than 200 words
# and zero-pad sequences shorter than 200 words.
x_train = keras.utils.pad_sequences(x_train, maxlen=maxlen)
x val = keras.utils.pad sequences(x val, maxlen=maxlen)
model.compile(optimizer="adam", loss="binary crossentropy",
              metrics=["accuracv"])
model.fit(x train, y train, batch size=32, epochs=2,
          validation_data=(x_val, y_val))
```

 Epoch 1/2

 782/782

 Epoch 2/2

 782/782

 54s 69ms/step - accuracy: 0.7540 - loss: 0.4697 - val_accu

 782/782

<keras.src.callbacks.history.History at 0x7f3efd663850>

• Lack of Coordination: Forget and write gates may lack coordination, leading to unnecessarily large state sizes.

- Lack of Coordination: Forget and write gates may lack coordination, leading to unnecessarily large state sizes.
- **Unbounded State**: Gates and candidate states can become saturated, affecting the model's performance.

- Lack of Coordination: Forget and write gates may lack coordination, leading to unnecessarily large state sizes.
- **Unbounded State**: Gates and candidate states can become saturated, affecting the model's performance.

Extensions and Variants:

 Normalized Prototype & GRU (Cho et al., 2014): Introduce bounds to prevent saturation, simplifying the architecture.

- Lack of Coordination: Forget and write gates may lack coordination, leading to unnecessarily large state sizes.
- **Unbounded State**: Gates and candidate states can become saturated, affecting the model's performance.

- Normalized Prototype & GRU (Cho et al., 2014): Introduce bounds to prevent saturation, simplifying the architecture.
- LSTM Variants:

- Lack of Coordination: Forget and write gates may lack coordination, leading to unnecessarily large state sizes.
- **Unbounded State**: Gates and candidate states can become saturated, affecting the model's performance.

- Normalized Prototype & GRU (Cho et al., 2014): Introduce bounds to prevent saturation, simplifying the architecture.
- LSTM Variants:
 - Basic LSTM: Standard implementation in frameworks like Keras, TensorFlow, or PyTorch.

- Lack of Coordination: Forget and write gates may lack coordination, leading to unnecessarily large state sizes.
- **Unbounded State**: Gates and candidate states can become saturated, affecting the model's performance.

- Normalized Prototype & GRU (Cho et al., 2014): Introduce bounds to prevent saturation, simplifying the architecture.
- LSTM Variants:
 - Basic LSTM: Standard implementation in frameworks like Keras, TensorFlow, or PyTorch.
 - LSTM hiccup: to limit states saturation in the basic LSTM.

- Lack of Coordination: Forget and write gates may lack coordination, leading to unnecessarily large state sizes.
- **Unbounded State**: Gates and candidate states can become saturated, affecting the model's performance.

- Normalized Prototype & GRU (Cho et al., 2014): Introduce bounds to prevent saturation, simplifying the architecture.
- LSTM Variants:
 - Basic LSTM: Standard implementation in frameworks like Keras, TensorFlow, or PyTorch.
 - LSTM hiccup: to limit states saturation in the basic LSTM.
 - *LSTM with Peepholes* (Graves, 2013): Incorporates peephole connections to enhance the model's memory capability.

• The task of predicting the probability of a sequence of words.

Formal Definition:

- The task of predicting the probability of a sequence of words.
- Serving as the foundation for various applications like text generation, machine translation, and speech recognition.

Formal Definition:

- The task of predicting the probability of a sequence of words.
- Serving as the foundation for various applications like text generation, machine translation, and speech recognition.

Formal Definition:

Given a sequence of words w₁, w₂, ..., w_n, a LM computes the probability P(w₁, w₂, ..., w_n).

- The task of predicting the probability of a sequence of words.
- Serving as the foundation for various applications like text generation, machine translation, and speech recognition.

Formal Definition:

- Given a sequence of words w₁, w₂, ..., w_n, a LM computes the probability P(w₁, w₂, ..., w_n).
- With probability's chain rule: $P(w_{1:n}) = \prod_{i=1}^{n} P(w_i | w_1, w_2, ..., w_{i-1}).$

- The task of predicting the probability of a sequence of words.
- Serving as the foundation for various applications like text generation, machine translation, and speech recognition.

Formal Definition:

- Given a sequence of words w₁, w₂, ..., w_n, a LM computes the probability P(w₁, w₂, ..., w_n).
- With probability's chain rule: $P(w_{1:n}) = \prod_{i=1}^{n} P(w_i | w_1, w_2, ..., w_{i-1}).$

Importance of Language Modeling:

• Enables NLP systems in generating human-like language.

- The task of predicting the probability of a sequence of words.
- Serving as the foundation for various applications like text generation, machine translation, and speech recognition.

Formal Definition:

- Given a sequence of words w₁, w₂, ..., w_n, a LM computes the probability P(w₁, w₂, ..., w_n).
- With probability's chain rule:

 $P(w_{1:n}) = \prod_{i=1}^{n} P(w_i | w_1, w_2, ..., w_{i-1}).$

- Enables NLP systems in generating human-like language.
- Used to train BERT and GPT-like models.

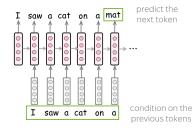
Language Model as Next Token Prediction

Next Token Prediction:

- $P(w_{1:n}) = \prod_{i=1}^{n} P(w_i | w_1, w_2, ..., w_{i-1})$
- Focus on Next Token Prediction,
 P(w_i|w₁, w₂, ..., w_{i-1}): predict the next word given previous ones.

With RNNs:

- Input: Sequence of tokens. "I saw a cart on a", the model receives "I", "saw", "a", "cat", "on", "a" as input one after the other.
- **Output**: At each step, the RNN predicts the probability distribution of the next token. Here "mat"



Credit: Lena Voita

Next Token Prediction with top-5 proposition when training a model:

	Е	n	g	L.	i.	s	h	-	L	а	n	g	u	а	g	е		w	e	ь	s	i.	t	е		o	f
	х	g	I.	i.	s	h		I.	i	n	g	u	а	g	e	s	а	i	r	s	i.	t	е		0	f	
k	n	t	i.	а	с	а	-	s	а	r	d	e	e	L	h		0	а	n		t	b	i.	s	а	n	f
	d	С	е	е	n		е	р	е	s	а	а	i	k	i		i.	е	е	L	е	d	h		i.	r	t
•	v	d	r	у	z	i.		С	0	u	е	d	I.	s	u	:	t	h	а	-	0	0			t	u	,
	L	٧	а	0	d			е	у	t	с	-	n		d	m	-	0	i.	b	u	٧	s]	b	b	

Credit: Karpathy

Language Modeling with RNN:

 RNNs are a powerful tool for language modeling, capturing the sequential nature and dependencies between words in text data.

Language Modeling with RNN:

- RNNs are a powerful tool for language modeling, capturing the sequential nature and dependencies between words in text data.
- Traditionally, words were represented as one-hot vectors, where each word is represented as a vector of the size of the vocabulary with all zeros except for a single one at the index of the word.

Language Modeling with RNN:

- RNNs are a powerful tool for language modeling, capturing the sequential nature and dependencies between words in text data.
- Traditionally, words were represented as one-hot vectors, where each word is represented as a vector of the size of the vocabulary with all zeros except for a single one at the index of the word.

Language Modeling with RNN:

- RNNs are a powerful tool for language modeling, capturing the sequential nature and dependencies between words in text data.
- Traditionally, words were represented as one-hot vectors, where each word is represented as a vector of the size of the vocabulary with all zeros except for a single one at the index of the word.

Limitations of One-Hot Representations:

• **Sparsity**: One-hot vectors are sparse and do not capture any semantic/contextual information.

Language Modeling with RNN:

- RNNs are a powerful tool for language modeling, capturing the sequential nature and dependencies between words in text data.
- Traditionally, words were represented as one-hot vectors, where each word is represented as a vector of the size of the vocabulary with all zeros except for a single one at the index of the word.

Limitations of One-Hot Representations:

- **Sparsity**: One-hot vectors are sparse and do not capture any semantic/contextual information.
- **Dimensionality**: The dimension of one-hot vectors grows with the size of the vocabulary, leading to scalability issues.

Transition to Dense Word Embeddings:

 RNNs, coupled with language modeling, can be used to learn dense word vectors, also known as word embeddings.

Transition to Dense Word Embeddings:

- RNNs, coupled with language modeling, can be used to learn dense word vectors, also known as word embeddings.
- **Richer Representations**: Word embeddings capture more than just the identity of words; they encode semantic meaning and context.

Transition to Dense Word Embeddings:

- RNNs, coupled with language modeling, can be used to learn dense word vectors, also known as word embeddings.
- Richer Representations: Word embeddings capture more than just the identity of words; they encode semantic meaning and context.
- Efficiency: Embeddings are lower-dimensional and dense, addressing the issues of sparsity and high dimensionality in one-hot representations.

Transition to Dense Word Embeddings:

- RNNs, coupled with language modeling, can be used to learn dense word vectors, also known as word embeddings.
- Richer Representations: Word embeddings capture more than just the identity of words; they encode semantic meaning and context.
- Efficiency: Embeddings are lower-dimensional and dense, addressing the issues of sparsity and high dimensionality in one-hot representations.

Transition to Dense Word Embeddings:

- RNNs, coupled with language modeling, can be used to learn dense word vectors, also known as word embeddings.
- Richer Representations: Word embeddings capture more than just the identity of words; they encode semantic meaning and context.
- Efficiency: Embeddings are lower-dimensional and dense, addressing the issues of sparsity and high dimensionality in one-hot representations.

Upcoming Session: We will delve deeper into the world of word embeddings, exploring how they revolutionize the understanding and representation of words in NLP models.

Open Discussion

- Feel free to ask questions or share your thoughts about today's topics.
- Any insights, experiences, or perspectives you'd like to discuss are welcome.

Summary of Key Takeaways

- Neural Networks: Explored the fundamentals of Neural Networks, including Vanilla Networks, Backpropagation, and Gradient Descent.
- **Gradient issues**: Illustrated the the issues of vanishing and exploding gradients and gave some paths to avoid it.
- RNNs: Discussed the significance of RNNs in handling sequential data and their applications in tasks like language modeling and machine translation.
- **LSTM:** Introduced the concept of gates (Write, Read, Forget) to control the flow of information.
- Language Modeling: Introduced it with RNNs: how are used for language modeling, emphasizing their ability to capture long-term dependencies.