
Advanced Methods in Natural Language
Processing
Session 2: Neural Networks, Backpropagation & Recurrent Neural
Networks

Arnault Gombert
April 2025

Barcelona School of Economics

1

Introduction

Introduction to Deep Learning

Today’s Focus: Understanding the Core of Neural Networks

• Neural Networks Basics: Exploring the structure and function of
simple neural networks.

• Gradient Descent and Backpropagation: Unveiling how neural
networks learn and optimize.

Advancing to Complex Models

• Recurrent Neural Networks (RNNs): Delving into the handling
of sequential data.

• Long Short-Term Memory (LSTM) Networks: Understanding
how LSTMs tackle the limitations of traditional RNNs.

• Language Models: Introducing and exploring basic language
models.

2

Neural Networks

Introduction to Neural Networks

• Diverse Network Types: Neural Networks encompass various
architectures, each suited to specific tasks.

• Multi-layer Perceptrons (MLPs): Basic form of NNs.
• Recurrent Neural Networks (RNNs): Ideal for sequential data like text

(Rumelhart et al., 1986).
• Convolutional Neural Networks (CNNs): Specialized in processing

structured grid data like images (LeCun et al., 1989).
• Transformers: NLP Revolution with attention mechanisms (Vaswani

et al., 2017).
• Understanding the Basics: Before delving into complex models,

it’s crucial to grasp the foundational principles.
• Avoiding the ”black box” approach
• Blind feature engineering without algorithmic understanding.

• Vanilla Neural Networks: Also known as single-layer
backpropagation networks, these form the cornerstone of more
complex architectures. 3

Vanilla Neural Networks

• K-Class Classification: With K
targets Yk , k ∈ [1, K].

• Hidden Units Zm:

• Formed from a linear combination of
inputs Xp.

• Zm = σ(α0m + αT
mX)∀m ∈ [1, M].

• Linear Combination for Tk :

• Tk = β0k + βT
k Z∀k ∈ [1, K].

• Output Function Yk :

• Softmax function applied to Tk .
• Yk = eTk∑K

l=1
eTl

∀k ∈ [1, K].

Credit: Hastie et al. (2009)

4

Vanilla Neural Networks

• K-Class Classification: With K
targets Yk , k ∈ [1, K].

• Hidden Units Zm:

• Formed from a linear combination of
inputs Xp.

• Zm = σ(α0m + αT
mX)∀m ∈ [1, M].

• Linear Combination for Tk :

• Tk = β0k + βT
k Z∀k ∈ [1, K].

• Output Function Yk :

• Softmax function applied to Tk .
• Yk = eTk∑K

l=1
eTl

∀k ∈ [1, K].

Credit: Hastie et al. (2009)

4

Vanilla Neural Networks

• K-Class Classification: With K
targets Yk , k ∈ [1, K].

• Hidden Units Zm:
• Formed from a linear combination of

inputs Xp.

• Zm = σ(α0m + αT
mX)∀m ∈ [1, M].

• Linear Combination for Tk :

• Tk = β0k + βT
k Z∀k ∈ [1, K].

• Output Function Yk :

• Softmax function applied to Tk .
• Yk = eTk∑K

l=1
eTl

∀k ∈ [1, K].

Credit: Hastie et al. (2009)

4

Vanilla Neural Networks

• K-Class Classification: With K
targets Yk , k ∈ [1, K].

• Hidden Units Zm:
• Formed from a linear combination of

inputs Xp.
• Zm = σ(α0m + αT

mX)∀m ∈ [1, M].

• Linear Combination for Tk :

• Tk = β0k + βT
k Z∀k ∈ [1, K].

• Output Function Yk :

• Softmax function applied to Tk .
• Yk = eTk∑K

l=1
eTl

∀k ∈ [1, K].

Credit: Hastie et al. (2009)

4

Vanilla Neural Networks

• K-Class Classification: With K
targets Yk , k ∈ [1, K].

• Hidden Units Zm:
• Formed from a linear combination of

inputs Xp.
• Zm = σ(α0m + αT

mX)∀m ∈ [1, M].

• Linear Combination for Tk :

• Tk = β0k + βT
k Z∀k ∈ [1, K].

• Output Function Yk :

• Softmax function applied to Tk .
• Yk = eTk∑K

l=1
eTl

∀k ∈ [1, K].

Credit: Hastie et al. (2009)

4

Vanilla Neural Networks

• K-Class Classification: With K
targets Yk , k ∈ [1, K].

• Hidden Units Zm:
• Formed from a linear combination of

inputs Xp.
• Zm = σ(α0m + αT

mX)∀m ∈ [1, M].

• Linear Combination for Tk :
• Tk = β0k + βT

k Z∀k ∈ [1, K].

• Output Function Yk :

• Softmax function applied to Tk .
• Yk = eTk∑K

l=1
eTl

∀k ∈ [1, K].

Credit: Hastie et al. (2009)

4

Vanilla Neural Networks

• K-Class Classification: With K
targets Yk , k ∈ [1, K].

• Hidden Units Zm:
• Formed from a linear combination of

inputs Xp.
• Zm = σ(α0m + αT

mX)∀m ∈ [1, M].

• Linear Combination for Tk :
• Tk = β0k + βT

k Z∀k ∈ [1, K].

• Output Function Yk :

• Softmax function applied to Tk .
• Yk = eTk∑K

l=1
eTl

∀k ∈ [1, K].

Credit: Hastie et al. (2009)

4

Vanilla Neural Networks

• K-Class Classification: With K
targets Yk , k ∈ [1, K].

• Hidden Units Zm:
• Formed from a linear combination of

inputs Xp.
• Zm = σ(α0m + αT

mX)∀m ∈ [1, M].

• Linear Combination for Tk :
• Tk = β0k + βT

k Z∀k ∈ [1, K].

• Output Function Yk :
• Softmax function applied to Tk .

• Yk = eTk∑K
l=1

eTl
∀k ∈ [1, K].

Credit: Hastie et al. (2009)

4

Vanilla Neural Networks

• K-Class Classification: With K
targets Yk , k ∈ [1, K].

• Hidden Units Zm:
• Formed from a linear combination of

inputs Xp.
• Zm = σ(α0m + αT

mX)∀m ∈ [1, M].

• Linear Combination for Tk :
• Tk = β0k + βT

k Z∀k ∈ [1, K].

• Output Function Yk :
• Softmax function applied to Tk .
• Yk = eTk∑K

l=1
eTl

∀k ∈ [1, K].

Credit: Hastie et al. (2009)

4

Vanilla Neural Networks: The Role of Non-Linearity

• Identity Function σ(v) = v : Reduces
to a linear model; typically used in
output layers for regression.

• Rectified Linear Unit (ReLU)
σ(v) = max(0, v): Popular for deep
networks.

• Sigmoid Function σ(v) = 1
1+e−v :

Commonly used, depicted on the right.
• Hyperbolic Tangent σ(v) = tanh(v):

Similar to sigmoid but ranges from -1
to 1.

• Others: Various options available in
deep learning libraries like Keras.

Credit: Hastie et al. (2009)

5

Fitting the Vanilla Neural Network - Classification Problem

• Hidden Layer (∀m in [1, M]):
Zm = σ(α0m + αT

mX)
• Output Layer (∀k in [1, K]):

Tk = β0k + βT
k Z

• Softmax Output (∀k in [1, K]):
Yk = eTk∑K

l=1 eTl
= fk(X)

Dimensionality and Loss Function
• α0m ∈ RM , αm ∈ RM×p, β0k ∈ RK ,

βk ∈ RM×K .
• Total Weights to Optimize (θ):

M(p + 1) + K (M + 1).
• L(θ) = −

∑K
k=1 yk log(fk(x))

• L(θ) = −
∑N

i=1
∑K

k=1 yik log(fk(xi))

Credit: Hastie et al. (2009)

6

Fitting the Vanilla Neural Network - Classification Problem

• Hidden Layer (∀m in [1, M]):
Zm = σ(α0m + αT

mX)
• Output Layer (∀k in [1, K]):

Tk = β0k + βT
k Z

• Softmax Output (∀k in [1, K]):
Yk = eTk∑K

l=1 eTl
= fk(X)

Dimensionality and Loss Function
• α0m ∈ RM , αm ∈ RM×p, β0k ∈ RK ,

βk ∈ RM×K .
• Total Weights to Optimize (θ):

M(p + 1) + K (M + 1).
• L(θ) = −

∑K
k=1 yk log(fk(x))

• L(θ) = −
∑N

i=1
∑K

k=1 yik log(fk(xi))

Credit: Hastie et al. (2009)

6

Gradient Descent Algorithm

Introduction to Gradient Descent

• Popular Optimization Algorithm: Widely used for function
optimization, for logistic regression or NNs.

• Neural Network Optimization: As highlighted by Ruder (2020),
it’s the most common method for optimizing neural networks.

• Widespread Implementation: Integral to many libraries like
TensorFlow, Keras, PyTorch, and Caffe, often utilized as
”black-boxes.”

• Objective: Minimizes loss function L(θ) parameterized by θ ∈ Rd .
• Types of Gradient Descent:

• Batch Gradient Descent (Vanilla): Uses the entire dataset for each
update.

• Stochastic Gradient Descent: Updates parameters for each training
example.

• Mini-batch Gradient Descent: Strikes a balance using subsets of the
dataset.

7

Introduction to Gradient Descent

• Popular Optimization Algorithm: Widely used for function
optimization, for logistic regression or NNs.

• Neural Network Optimization: As highlighted by Ruder (2020),
it’s the most common method for optimizing neural networks.

• Widespread Implementation: Integral to many libraries like
TensorFlow, Keras, PyTorch, and Caffe, often utilized as
”black-boxes.”

• Objective: Minimizes loss function L(θ) parameterized by θ ∈ Rd .
• Types of Gradient Descent:

• Batch Gradient Descent (Vanilla): Uses the entire dataset for each
update.

• Stochastic Gradient Descent: Updates parameters for each training
example.

• Mini-batch Gradient Descent: Strikes a balance using subsets of the
dataset.

7

Introduction to Gradient Descent

• Popular Optimization Algorithm: Widely used for function
optimization, for logistic regression or NNs.

• Neural Network Optimization: As highlighted by Ruder (2020),
it’s the most common method for optimizing neural networks.

• Widespread Implementation: Integral to many libraries like
TensorFlow, Keras, PyTorch, and Caffe, often utilized as
”black-boxes.”

• Objective: Minimizes loss function L(θ) parameterized by θ ∈ Rd .
• Types of Gradient Descent:

• Batch Gradient Descent (Vanilla): Uses the entire dataset for each
update.

• Stochastic Gradient Descent: Updates parameters for each training
example.

• Mini-batch Gradient Descent: Strikes a balance using subsets of the
dataset.

7

Introduction to Gradient Descent

• Popular Optimization Algorithm: Widely used for function
optimization, for logistic regression or NNs.

• Neural Network Optimization: As highlighted by Ruder (2020),
it’s the most common method for optimizing neural networks.

• Widespread Implementation: Integral to many libraries like
TensorFlow, Keras, PyTorch, and Caffe, often utilized as
”black-boxes.”

• Objective: Minimizes loss function L(θ) parameterized by θ ∈ Rd .

• Types of Gradient Descent:

• Batch Gradient Descent (Vanilla): Uses the entire dataset for each
update.

• Stochastic Gradient Descent: Updates parameters for each training
example.

• Mini-batch Gradient Descent: Strikes a balance using subsets of the
dataset.

7

Introduction to Gradient Descent

• Popular Optimization Algorithm: Widely used for function
optimization, for logistic regression or NNs.

• Neural Network Optimization: As highlighted by Ruder (2020),
it’s the most common method for optimizing neural networks.

• Widespread Implementation: Integral to many libraries like
TensorFlow, Keras, PyTorch, and Caffe, often utilized as
”black-boxes.”

• Objective: Minimizes loss function L(θ) parameterized by θ ∈ Rd .
• Types of Gradient Descent:

• Batch Gradient Descent (Vanilla): Uses the entire dataset for each
update.

• Stochastic Gradient Descent: Updates parameters for each training
example.

• Mini-batch Gradient Descent: Strikes a balance using subsets of the
dataset.

7

Introduction to Gradient Descent

• Popular Optimization Algorithm: Widely used for function
optimization, for logistic regression or NNs.

• Neural Network Optimization: As highlighted by Ruder (2020),
it’s the most common method for optimizing neural networks.

• Widespread Implementation: Integral to many libraries like
TensorFlow, Keras, PyTorch, and Caffe, often utilized as
”black-boxes.”

• Objective: Minimizes loss function L(θ) parameterized by θ ∈ Rd .
• Types of Gradient Descent:

• Batch Gradient Descent (Vanilla): Uses the entire dataset for each
update.

• Stochastic Gradient Descent: Updates parameters for each training
example.

• Mini-batch Gradient Descent: Strikes a balance using subsets of the
dataset.

7

Introduction to Gradient Descent

• Popular Optimization Algorithm: Widely used for function
optimization, for logistic regression or NNs.

• Neural Network Optimization: As highlighted by Ruder (2020),
it’s the most common method for optimizing neural networks.

• Widespread Implementation: Integral to many libraries like
TensorFlow, Keras, PyTorch, and Caffe, often utilized as
”black-boxes.”

• Objective: Minimizes loss function L(θ) parameterized by θ ∈ Rd .
• Types of Gradient Descent:

• Batch Gradient Descent (Vanilla): Uses the entire dataset for each
update.

• Stochastic Gradient Descent: Updates parameters for each training
example.

• Mini-batch Gradient Descent: Strikes a balance using subsets of the
dataset.

7

Introduction to Gradient Descent

• Popular Optimization Algorithm: Widely used for function
optimization, for logistic regression or NNs.

• Neural Network Optimization: As highlighted by Ruder (2020),
it’s the most common method for optimizing neural networks.

• Widespread Implementation: Integral to many libraries like
TensorFlow, Keras, PyTorch, and Caffe, often utilized as
”black-boxes.”

• Objective: Minimizes loss function L(θ) parameterized by θ ∈ Rd .
• Types of Gradient Descent:

• Batch Gradient Descent (Vanilla): Uses the entire dataset for each
update.

• Stochastic Gradient Descent: Updates parameters for each training
example.

• Mini-batch Gradient Descent: Strikes a balance using subsets of the
dataset. 7

Batch Gradient Descent (Vanilla)

Update Rule:

θ = θ − η∇θL(θ)

with η as the learning rate.

Direction of Update: Updates parameters
in the opposite direction to the gradient
of the objective function ∇θL(θ).

Analogy: Similar to descending a mountain
to reach a valley, considering the slope to
find the optimal path.

Limitation: Requires processing the entire
dataset for each update, problematic for
large datasets due to memory constraints.

Credit: Imad Daburra

8

Batch Gradient Descent (Vanilla)

Update Rule:

θ = θ − η∇θL(θ)

with η as the learning rate.

Direction of Update: Updates parameters
in the opposite direction to the gradient
of the objective function ∇θL(θ).

Analogy: Similar to descending a mountain
to reach a valley, considering the slope to
find the optimal path.

Limitation: Requires processing the entire
dataset for each update, problematic for
large datasets due to memory constraints.

Credit: Imad Daburra

8

Batch Gradient Descent (Vanilla)

Update Rule:

θ = θ − η∇θL(θ)

with η as the learning rate.

Direction of Update: Updates parameters
in the opposite direction to the gradient
of the objective function ∇θL(θ).

Analogy: Similar to descending a mountain
to reach a valley, considering the slope to
find the optimal path.

Limitation: Requires processing the entire
dataset for each update, problematic for
large datasets due to memory constraints.

Credit: Imad Daburra

8

Batch Gradient Descent (Vanilla)

Update Rule:

θ = θ − η∇θL(θ)

with η as the learning rate.

Direction of Update: Updates parameters
in the opposite direction to the gradient
of the objective function ∇θL(θ).

Analogy: Similar to descending a mountain
to reach a valley, considering the slope to
find the optimal path.

Limitation: Requires processing the entire
dataset for each update, problematic for
large datasets due to memory constraints.

Credit: Imad Daburra

8

Stochastic Gradient Descent

Update for Each Observation: Applies
the gradient descent update rule for each
observation individually, chosen randomly.

Update Rule:

θ = θ − η∇θL(θ, xi , yi)

Advantages: Faster updates, suitable for
online learning, and better exploration of
minima compared to batch gradient
descent.

Challenge: Tendency to oscillate around or
even overshoot minima. Reducing η over
time can mitigate this issue.

Credit: Wikipedia

9

Stochastic Gradient Descent

Update for Each Observation: Applies
the gradient descent update rule for each
observation individually, chosen randomly.

Update Rule:

θ = θ − η∇θL(θ, xi , yi)

Advantages: Faster updates, suitable for
online learning, and better exploration of
minima compared to batch gradient
descent.

Challenge: Tendency to oscillate around or
even overshoot minima. Reducing η over
time can mitigate this issue.

Credit: Wikipedia

9

Stochastic Gradient Descent

Update for Each Observation: Applies
the gradient descent update rule for each
observation individually, chosen randomly.

Update Rule:

θ = θ − η∇θL(θ, xi , yi)

Advantages: Faster updates, suitable for
online learning, and better exploration of
minima compared to batch gradient
descent.

Challenge: Tendency to oscillate around or
even overshoot minima. Reducing η over
time can mitigate this issue.

Credit: Wikipedia

9

Stochastic Gradient Descent

Update for Each Observation: Applies
the gradient descent update rule for each
observation individually, chosen randomly.

Update Rule:

θ = θ − η∇θL(θ, xi , yi)

Advantages: Faster updates, suitable for
online learning, and better exploration of
minima compared to batch gradient
descent.

Challenge: Tendency to oscillate around or
even overshoot minima. Reducing η over
time can mitigate this issue.

Credit: Wikipedia

9

Mini-batch Gradient Descent

Combining the Best of Both Worlds!
Update Rule:

θ = θ − η∇θL(θ, xi :i+n, yi :i+n)

Reduced Variance: Balances the variance
of updates: more stable convergence than
SGD.

Efficiency: Tends to be faster than Batch
Gradient Descent, particularly for large
datasets.

Widely Adopted: Often the preferred
choice in practical applications and deep
learning frameworks.

Credit: Imad Daburra

10

Mini-batch Gradient Descent

Combining the Best of Both Worlds!
Update Rule:

θ = θ − η∇θL(θ, xi :i+n, yi :i+n)

Reduced Variance: Balances the variance
of updates: more stable convergence than
SGD.

Efficiency: Tends to be faster than Batch
Gradient Descent, particularly for large
datasets.

Widely Adopted: Often the preferred
choice in practical applications and deep
learning frameworks.

Credit: Imad Daburra

10

Mini-batch Gradient Descent

Combining the Best of Both Worlds!
Update Rule:

θ = θ − η∇θL(θ, xi :i+n, yi :i+n)

Reduced Variance: Balances the variance
of updates: more stable convergence than
SGD.

Efficiency: Tends to be faster than Batch
Gradient Descent, particularly for large
datasets.

Widely Adopted: Often the preferred
choice in practical applications and deep
learning frameworks.

Credit: Imad Daburra

10

Mini-batch Gradient Descent

Combining the Best of Both Worlds!
Update Rule:

θ = θ − η∇θL(θ, xi :i+n, yi :i+n)

Reduced Variance: Balances the variance
of updates: more stable convergence than
SGD.

Efficiency: Tends to be faster than Batch
Gradient Descent, particularly for large
datasets.

Widely Adopted: Often the preferred
choice in practical applications and deep
learning frameworks.

Credit: Imad Daburra

10

Main Challenges in Gradient Descent

• Optimizing Learning Rate:

• Too Low : Slow convergence.
• Too High: May lead to divergence.

• Adaptive Learning Rates:

• Dynamic Adjustments: Varying the rate during exploration and
refinement phases.

• Examples: Momentum (Qian, 1999), Nesterov accelerated gradient
(Nesterov, 1983).

• Parameter-Specific Learning Rates:

• Individual learning rates for different parameters.
• Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.),

Adam (Kingma et al., 2015).

• Non-Convex Functions:

• Gradient descent can struggle with complex, non-convex functions
typical in deep neural networks.

• Issue: Getting trapped in local minima.

11

Main Challenges in Gradient Descent

• Optimizing Learning Rate:
• Too Low : Slow convergence.

• Too High: May lead to divergence.
• Adaptive Learning Rates:

• Dynamic Adjustments: Varying the rate during exploration and
refinement phases.

• Examples: Momentum (Qian, 1999), Nesterov accelerated gradient
(Nesterov, 1983).

• Parameter-Specific Learning Rates:

• Individual learning rates for different parameters.
• Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.),

Adam (Kingma et al., 2015).

• Non-Convex Functions:

• Gradient descent can struggle with complex, non-convex functions
typical in deep neural networks.

• Issue: Getting trapped in local minima.

11

Main Challenges in Gradient Descent

• Optimizing Learning Rate:
• Too Low : Slow convergence.
• Too High: May lead to divergence.

• Adaptive Learning Rates:

• Dynamic Adjustments: Varying the rate during exploration and
refinement phases.

• Examples: Momentum (Qian, 1999), Nesterov accelerated gradient
(Nesterov, 1983).

• Parameter-Specific Learning Rates:

• Individual learning rates for different parameters.
• Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.),

Adam (Kingma et al., 2015).

• Non-Convex Functions:

• Gradient descent can struggle with complex, non-convex functions
typical in deep neural networks.

• Issue: Getting trapped in local minima.

11

Main Challenges in Gradient Descent

• Optimizing Learning Rate:
• Too Low : Slow convergence.
• Too High: May lead to divergence.

• Adaptive Learning Rates:

• Dynamic Adjustments: Varying the rate during exploration and
refinement phases.

• Examples: Momentum (Qian, 1999), Nesterov accelerated gradient
(Nesterov, 1983).

• Parameter-Specific Learning Rates:

• Individual learning rates for different parameters.
• Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.),

Adam (Kingma et al., 2015).

• Non-Convex Functions:

• Gradient descent can struggle with complex, non-convex functions
typical in deep neural networks.

• Issue: Getting trapped in local minima.

11

Main Challenges in Gradient Descent

• Optimizing Learning Rate:
• Too Low : Slow convergence.
• Too High: May lead to divergence.

• Adaptive Learning Rates:
• Dynamic Adjustments: Varying the rate during exploration and

refinement phases.

• Examples: Momentum (Qian, 1999), Nesterov accelerated gradient
(Nesterov, 1983).

• Parameter-Specific Learning Rates:

• Individual learning rates for different parameters.
• Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.),

Adam (Kingma et al., 2015).

• Non-Convex Functions:

• Gradient descent can struggle with complex, non-convex functions
typical in deep neural networks.

• Issue: Getting trapped in local minima.

11

Main Challenges in Gradient Descent

• Optimizing Learning Rate:
• Too Low : Slow convergence.
• Too High: May lead to divergence.

• Adaptive Learning Rates:
• Dynamic Adjustments: Varying the rate during exploration and

refinement phases.
• Examples: Momentum (Qian, 1999), Nesterov accelerated gradient

(Nesterov, 1983).

• Parameter-Specific Learning Rates:

• Individual learning rates for different parameters.
• Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.),

Adam (Kingma et al., 2015).

• Non-Convex Functions:

• Gradient descent can struggle with complex, non-convex functions
typical in deep neural networks.

• Issue: Getting trapped in local minima.

11

Main Challenges in Gradient Descent

• Optimizing Learning Rate:
• Too Low : Slow convergence.
• Too High: May lead to divergence.

• Adaptive Learning Rates:
• Dynamic Adjustments: Varying the rate during exploration and

refinement phases.
• Examples: Momentum (Qian, 1999), Nesterov accelerated gradient

(Nesterov, 1983).
• Parameter-Specific Learning Rates:

• Individual learning rates for different parameters.
• Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.),

Adam (Kingma et al., 2015).
• Non-Convex Functions:

• Gradient descent can struggle with complex, non-convex functions
typical in deep neural networks.

• Issue: Getting trapped in local minima.

11

Main Challenges in Gradient Descent

• Optimizing Learning Rate:
• Too Low : Slow convergence.
• Too High: May lead to divergence.

• Adaptive Learning Rates:
• Dynamic Adjustments: Varying the rate during exploration and

refinement phases.
• Examples: Momentum (Qian, 1999), Nesterov accelerated gradient

(Nesterov, 1983).
• Parameter-Specific Learning Rates:

• Individual learning rates for different parameters.

• Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.),
Adam (Kingma et al., 2015).

• Non-Convex Functions:

• Gradient descent can struggle with complex, non-convex functions
typical in deep neural networks.

• Issue: Getting trapped in local minima.

11

Main Challenges in Gradient Descent

• Optimizing Learning Rate:
• Too Low : Slow convergence.
• Too High: May lead to divergence.

• Adaptive Learning Rates:
• Dynamic Adjustments: Varying the rate during exploration and

refinement phases.
• Examples: Momentum (Qian, 1999), Nesterov accelerated gradient

(Nesterov, 1983).
• Parameter-Specific Learning Rates:

• Individual learning rates for different parameters.
• Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.),

Adam (Kingma et al., 2015).

• Non-Convex Functions:

• Gradient descent can struggle with complex, non-convex functions
typical in deep neural networks.

• Issue: Getting trapped in local minima.

11

Main Challenges in Gradient Descent

• Optimizing Learning Rate:
• Too Low : Slow convergence.
• Too High: May lead to divergence.

• Adaptive Learning Rates:
• Dynamic Adjustments: Varying the rate during exploration and

refinement phases.
• Examples: Momentum (Qian, 1999), Nesterov accelerated gradient

(Nesterov, 1983).
• Parameter-Specific Learning Rates:

• Individual learning rates for different parameters.
• Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.),

Adam (Kingma et al., 2015).
• Non-Convex Functions:

• Gradient descent can struggle with complex, non-convex functions
typical in deep neural networks.

• Issue: Getting trapped in local minima.

11

Main Challenges in Gradient Descent

• Optimizing Learning Rate:
• Too Low : Slow convergence.
• Too High: May lead to divergence.

• Adaptive Learning Rates:
• Dynamic Adjustments: Varying the rate during exploration and

refinement phases.
• Examples: Momentum (Qian, 1999), Nesterov accelerated gradient

(Nesterov, 1983).
• Parameter-Specific Learning Rates:

• Individual learning rates for different parameters.
• Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.),

Adam (Kingma et al., 2015).
• Non-Convex Functions:

• Gradient descent can struggle with complex, non-convex functions
typical in deep neural networks.

• Issue: Getting trapped in local minima.

11

Main Challenges in Gradient Descent

• Optimizing Learning Rate:
• Too Low : Slow convergence.
• Too High: May lead to divergence.

• Adaptive Learning Rates:
• Dynamic Adjustments: Varying the rate during exploration and

refinement phases.
• Examples: Momentum (Qian, 1999), Nesterov accelerated gradient

(Nesterov, 1983).
• Parameter-Specific Learning Rates:

• Individual learning rates for different parameters.
• Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.),

Adam (Kingma et al., 2015).
• Non-Convex Functions:

• Gradient descent can struggle with complex, non-convex functions
typical in deep neural networks.

• Issue: Getting trapped in local minima.
11

Apply Gradient Descent Algorithm

Applying the Gradient Descent Algorithm

• Loss Function:

L(θ) = −
K∑

k=1

N∑
i=1

yik log(fk(xi))

• Optimization Algorithm:

θ = θ − η∇θL(θ, xi :i+n, yi :i+n)

• Parameter Dimensions:

• α0m ∈ RM , αm ∈ RM×p

• β0 ∈ RK , βk ∈ RM×K

• Understanding the Chain Rule:
∂f (x)

∂z = ∂f (x)
∂t

∂t
∂z

Key to computing gradients for backpropagation.

12

Applying the Gradient Descent Algorithm

• Loss Function:

L(θ) = −
K∑

k=1

N∑
i=1

yik log(fk(xi))

• Optimization Algorithm:

θ = θ − η∇θL(θ, xi :i+n, yi :i+n)

• Parameter Dimensions:

• α0m ∈ RM , αm ∈ RM×p

• β0 ∈ RK , βk ∈ RM×K

• Understanding the Chain Rule:
∂f (x)

∂z = ∂f (x)
∂t

∂t
∂z

Key to computing gradients for backpropagation.

12

Applying the Gradient Descent Algorithm

• Loss Function:

L(θ) = −
K∑

k=1

N∑
i=1

yik log(fk(xi))

• Optimization Algorithm:

θ = θ − η∇θL(θ, xi :i+n, yi :i+n)

• Parameter Dimensions:

• α0m ∈ RM , αm ∈ RM×p

• β0 ∈ RK , βk ∈ RM×K

• Understanding the Chain Rule:
∂f (x)

∂z = ∂f (x)
∂t

∂t
∂z

Key to computing gradients for backpropagation.

12

Applying the Gradient Descent Algorithm

• Loss Function:

L(θ) = −
K∑

k=1

N∑
i=1

yik log(fk(xi))

• Optimization Algorithm:

θ = θ − η∇θL(θ, xi :i+n, yi :i+n)

• Parameter Dimensions:
• α0m ∈ RM , αm ∈ RM×p

• β0 ∈ RK , βk ∈ RM×K

• Understanding the Chain Rule:
∂f (x)

∂z = ∂f (x)
∂t

∂t
∂z

Key to computing gradients for backpropagation.

12

Applying the Gradient Descent Algorithm

• Loss Function:

L(θ) = −
K∑

k=1

N∑
i=1

yik log(fk(xi))

• Optimization Algorithm:

θ = θ − η∇θL(θ, xi :i+n, yi :i+n)

• Parameter Dimensions:
• α0m ∈ RM , αm ∈ RM×p

• β0 ∈ RK , βk ∈ RM×K

• Understanding the Chain Rule:
∂f (x)

∂z = ∂f (x)
∂t

∂t
∂z

Key to computing gradients for backpropagation.

12

Applying the Gradient Descent Algorithm

• Loss Function:

L(θ) = −
K∑

k=1

N∑
i=1

yik log(fk(xi))

• Optimization Algorithm:

θ = θ − η∇θL(θ, xi :i+n, yi :i+n)

• Parameter Dimensions:
• α0m ∈ RM , αm ∈ RM×p

• β0 ∈ RK , βk ∈ RM×K

• Understanding the Chain Rule:
∂f (x)

∂z = ∂f (x)
∂t

∂t
∂z

Key to computing gradients for backpropagation.

12

Application to a Single-Layer Neural Network

Classification Problem Formulation:

• For each hidden unit m in [1, M]: Zm = σ(α0m + αT
mX)

• For each output unit k in [1, K]: Tk = β0k + βT
k Z

• For the softmax output: Yk = eTk∑K
l=1 eTl

= gk(T) = fk(X)
• Loss function:

L(θ) = −
K∑

k=1

N∑
i=1

yik log(fk(xi))

Applying the Chain Rule to Compute Gradients for βk :

• Gradient of the loss function with respect to βk :
∂L(θ)
∂βk

= − ∂

∂βk

K∑
j=1

N∑
i=1

yij log(fj(xi))

13

Application to a Single-Layer Neural Network

Classification Problem Formulation:

• For each hidden unit m in [1, M]: Zm = σ(α0m + αT
mX)

• For each output unit k in [1, K]: Tk = β0k + βT
k Z

• For the softmax output: Yk = eTk∑K
l=1 eTl

= gk(T) = fk(X)
• Loss function:

L(θ) = −
K∑

k=1

N∑
i=1

yik log(fk(xi))

Applying the Chain Rule to Compute Gradients for βk :

• Gradient of the loss function with respect to βk :
∂L(θ)
∂βk

= − ∂

∂βk

K∑
j=1

N∑
i=1

yij log(fj(xi))

13

Application to a Single-Layer Neural Network

Classification Problem Formulation:

• For each hidden unit m in [1, M]: Zm = σ(α0m + αT
mX)

• For each output unit k in [1, K]: Tk = β0k + βT
k Z

• For the softmax output: Yk = eTk∑K
l=1 eTl

= gk(T) = fk(X)

• Loss function:

L(θ) = −
K∑

k=1

N∑
i=1

yik log(fk(xi))

Applying the Chain Rule to Compute Gradients for βk :

• Gradient of the loss function with respect to βk :
∂L(θ)
∂βk

= − ∂

∂βk

K∑
j=1

N∑
i=1

yij log(fj(xi))

13

Application to a Single-Layer Neural Network

Classification Problem Formulation:

• For each hidden unit m in [1, M]: Zm = σ(α0m + αT
mX)

• For each output unit k in [1, K]: Tk = β0k + βT
k Z

• For the softmax output: Yk = eTk∑K
l=1 eTl

= gk(T) = fk(X)
• Loss function:

L(θ) = −
K∑

k=1

N∑
i=1

yik log(fk(xi))

Applying the Chain Rule to Compute Gradients for βk :

• Gradient of the loss function with respect to βk :
∂L(θ)
∂βk

= − ∂

∂βk

K∑
j=1

N∑
i=1

yij log(fj(xi))

13

Application to a Single-Layer Neural Network

Classification Problem Formulation:

• For each hidden unit m in [1, M]: Zm = σ(α0m + αT
mX)

• For each output unit k in [1, K]: Tk = β0k + βT
k Z

• For the softmax output: Yk = eTk∑K
l=1 eTl

= gk(T) = fk(X)
• Loss function:

L(θ) = −
K∑

k=1

N∑
i=1

yik log(fk(xi))

Applying the Chain Rule to Compute Gradients for βk :

• Gradient of the loss function with respect to βk :
∂L(θ)
∂βk

= − ∂

∂βk

K∑
j=1

N∑
i=1

yij log(fj(xi))

13

Application to a Single-Layer Neural Network

Classification Problem Formulation:

• For each hidden unit m in [1, M]: Zm = σ(α0m + αT
mX)

• For each output unit k in [1, K]: Tk = β0k + βT
k Z

• For the softmax output: Yk = eTk∑K
l=1 eTl

= gk(T) = fk(X)
• Loss function:

L(θ) = −
K∑

k=1

N∑
i=1

yik log(fk(xi))

Applying the Chain Rule to Compute Gradients for βk :

• Gradient of the loss function with respect to βk :
∂L(θ)
∂βk

= − ∂

∂βk

K∑
j=1

N∑
i=1

yij log(fj(xi))

13

Derivatives of βk - Part 1

∂L(θ)
∂βk

= −
K∑

j=1
Yj

∂ log(Ŷj)
∂βk

= −
K∑

j=1
Yj

(
∂Tj
∂βk

− ∂ log(∑K
l=1 eTl)

∂βk

)

= −
K∑

j=1
Yj

(
1j=kZT − eTk ZT∑K

l=1 eTl

)

= −
K∑

j=1
Yj
(
1j=kZT − ŶkZT

)

14

Derivatives of βk - Part 2

∂L(θ)
∂βk

= −
K∑

j=1
Yj
(
1j=kZT − ŶkZT

)

=

 K∑
j=1

Yj Ŷk −
K∑

j=1
Yj1j=k

ZT

=

Ŷk

K∑
j=1

Yj − Yk

ZT

=
(
Ŷk − Yk

)
ZT

βr+1
k = βr

k − η
∂L(θ)
∂βk

βr+1
k = βr

k − η
(
Ŷk − Yk

)
ZT

15

Backpropagation: Understanding the Chain Rule

The Chain Rule in Neural Networks:
• Fundamental to backpropagation:

∂f (x)
∂z = ∂f (x)

∂s
∂s
∂z

• downstream gradient = upstream
gradient × local gradient.

• This principle encounters challenges:
• Vanishing Gradient: Gradients

become very small, hindering
learning.

• Exploding Gradient: Gradients grow
too large, leading to unstable
learning.

• It can prevent the model from learning!

Credit: Christopher Manning

16

Understanding Vanishing Gradient

• When gradients become increasingly
small as they are propagated back
through the layers.

• Especially in networks with many
layers.

Illustrative Example:
• Consider a deep NN with sigmoid.
• Sigmoid gradients in (0, 0.25].
• Multiplying many such small values

(chain rule!) makes the gradient
increasingly smaller.

Consequence:
• Lower layers of the network learn very

slowly, making training ineffective.

Sigmoid and its derivative

17

Understanding Exploding Gradient

• When gradients become excessively
large: model weights oscillate wildly.

• Often seen in NN with improper
initialization or high learning rates.

Illustrative Example:
• NN with large weight values and high

learning rates.
• Small changes in input lead to large

changes in the output.
• Gradients can grow exponentially

during backpropagation through layers.
Consequence:

• Results in unstable training: weights
diverge and NN fail to converge.

ReLU and its derivative

18

Complex Models

Recurrent Neural Networks

Introduction to Recurrent Neural Networks (RNNs)

Overview of RNNs:

• RNNs, introduced by Rumelhart et al. (1986), are powerful networks
for sequential data processing.

• Key Models: Vanilla RNNs and Long Short-Term Memory (LSTM)
networks.

• State-of-the-art in various NLP tasks (e.g., machine translation, text
generation) before the advent of Transformers and BERT models.

19

Introduction to Recurrent Neural Networks (RNNs)

Motivation for Using RNNs:

• Sequential Data Processing:
• Traditional feed-forward networks are not optimized for sequential

data like text or time series.
• RNNs are designed to handle data where variables are interlinked

sequentially.
• Example - Text Analysis:

• For a word like ”mathematics,” tokenized as ”m, a, t, h, e, m, a, t, i,
c, s,” RNNs can capture the sequence’s inherent dependencies.

• This sequential understanding is crucial for tasks like language
modeling and translation.

20

Recurrent Neural Networks -
General

What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.

• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:

• External Output: Can be used or ignored
depending on the application.

• Internal Output: The state passed to the
next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21

What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.
• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:

• External Output: Can be used or ignored
depending on the application.

• Internal Output: The state passed to the
next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21

What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.
• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:

• External Output: Can be used or ignored
depending on the application.

• Internal Output: The state passed to the
next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21

What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.
• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:

• External Output: Can be used or ignored
depending on the application.

• Internal Output: The state passed to the
next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21

What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.
• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:

• External Output: Can be used or ignored
depending on the application.

• Internal Output: The state passed to the
next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21

What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.
• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:
• External Output: Can be used or ignored

depending on the application.

• Internal Output: The state passed to the
next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21

What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.
• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:
• External Output: Can be used or ignored

depending on the application.
• Internal Output: The state passed to the

next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21

What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.
• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:
• External Output: Can be used or ignored

depending on the application.
• Internal Output: The state passed to the

next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21

Mathematical Description of a Recurrent Neural Network

Mathematical Formulation:(
st

ot

)
= f

((
st−1

xt

))

Where:
• st and st−1 are the current and previous

states, respectively.

• ot is the output at time t.
• xt is the current input (optional).
• f represents the recurrent function,

defining how the next state and output are
computed.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

22

Mathematical Description of a Recurrent Neural Network

Mathematical Formulation:(
st

ot

)
= f

((
st−1

xt

))

Where:
• st and st−1 are the current and previous

states, respectively.
• ot is the output at time t.

• xt is the current input (optional).
• f represents the recurrent function,

defining how the next state and output are
computed.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

22

Mathematical Description of a Recurrent Neural Network

Mathematical Formulation:(
st

ot

)
= f

((
st−1

xt

))

Where:
• st and st−1 are the current and previous

states, respectively.
• ot is the output at time t.
• xt is the current input (optional).

• f represents the recurrent function,
defining how the next state and output are
computed.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

22

Mathematical Description of a Recurrent Neural Network

Mathematical Formulation:(
st

ot

)
= f

((
st−1

xt

))

Where:
• st and st−1 are the current and previous

states, respectively.
• ot is the output at time t.
• xt is the current input (optional).
• f represents the recurrent function,

defining how the next state and output are
computed.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

22

RNNs in Translation Tasks

• RNNs are particularly effective in sequence-to-sequence tasks like
language translation.

• They process sequential inputs and generate sequential outputs,
capturing the nuances of language patterns.

RNN for Translation - Example 1 RNN for Translation - Example 2

Credit: R2Rt blog

23

Vanilla Recurrent Neural Network

The Vanilla RNN

Characteristics of the Vanilla RNN:
• Features a single layer with identical

current output and current state.

• Prior and current states have the same
dimension.

Mathematical Description:

• State Update:
st = ϕ(Wst−1 + Uxt + b)

• Activation Function: ϕ

• Dimensions: st , st−1 ∈ Rn, xt ∈ Rm

• Weights: W ∈ Rn×n, U ∈ Rm×n,
b ∈ Rn

The Vanilla RNN.
Credit: R2Rt blog

24

The Vanilla RNN

Characteristics of the Vanilla RNN:
• Features a single layer with identical

current output and current state.
• Prior and current states have the same

dimension.
Mathematical Description:

• State Update:
st = ϕ(Wst−1 + Uxt + b)

• Activation Function: ϕ

• Dimensions: st , st−1 ∈ Rn, xt ∈ Rm

• Weights: W ∈ Rn×n, U ∈ Rm×n,
b ∈ Rn

The Vanilla RNN.
Credit: R2Rt blog

24

The Vanilla RNN

Characteristics of the Vanilla RNN:
• Features a single layer with identical

current output and current state.
• Prior and current states have the same

dimension.
Mathematical Description:

• State Update:
st = ϕ(Wst−1 + Uxt + b)

• Activation Function: ϕ

• Dimensions: st , st−1 ∈ Rn, xt ∈ Rm

• Weights: W ∈ Rn×n, U ∈ Rm×n,
b ∈ Rn

The Vanilla RNN.
Credit: R2Rt blog

24

The Vanilla RNN

Characteristics of the Vanilla RNN:
• Features a single layer with identical

current output and current state.
• Prior and current states have the same

dimension.
Mathematical Description:

• State Update:
st = ϕ(Wst−1 + Uxt + b)

• Activation Function: ϕ

• Dimensions: st , st−1 ∈ Rn, xt ∈ Rm

• Weights: W ∈ Rn×n, U ∈ Rm×n,
b ∈ Rn

The Vanilla RNN.
Credit: R2Rt blog

24

The Vanilla RNN

Characteristics of the Vanilla RNN:
• Features a single layer with identical

current output and current state.
• Prior and current states have the same

dimension.
Mathematical Description:

• State Update:
st = ϕ(Wst−1 + Uxt + b)

• Activation Function: ϕ

• Dimensions: st , st−1 ∈ Rn, xt ∈ Rm

• Weights: W ∈ Rn×n, U ∈ Rm×n,
b ∈ Rn

The Vanilla RNN.
Credit: R2Rt blog

24

The Vanilla RNN

Characteristics of the Vanilla RNN:
• Features a single layer with identical

current output and current state.
• Prior and current states have the same

dimension.
Mathematical Description:

• State Update:
st = ϕ(Wst−1 + Uxt + b)

• Activation Function: ϕ

• Dimensions: st , st−1 ∈ Rn, xt ∈ Rm

• Weights: W ∈ Rn×n, U ∈ Rm×n,
b ∈ Rn

The Vanilla RNN.
Credit: R2Rt blog

24

Main Limitations of RNNs

Information Morphing:

• State Transformation: Information (st) changes from one state to
another, potentially losing key information from the distant past.

• Dual Learning Challenge:

• Learning to read the previous state.
• Learning to use the current state effectively.

• Known as the degradation problem (He et al., 2015).

Exploding Gradients: Can prevent model training; mitigated by limiting
gradient values (Mikolov, 2012). Vanishing Gradients:

• Challenge in learning long-term dependencies.
• Mitigation strategies: regularization and specific weight initialization

(Pascanu et al., 2013; Xavier-Glorot, Glorot and Bengio, 2010).

25

Main Limitations of RNNs

Information Morphing:

• State Transformation: Information (st) changes from one state to
another, potentially losing key information from the distant past.

• Dual Learning Challenge:

• Learning to read the previous state.
• Learning to use the current state effectively.

• Known as the degradation problem (He et al., 2015).

Exploding Gradients: Can prevent model training; mitigated by limiting
gradient values (Mikolov, 2012). Vanishing Gradients:

• Challenge in learning long-term dependencies.
• Mitigation strategies: regularization and specific weight initialization

(Pascanu et al., 2013; Xavier-Glorot, Glorot and Bengio, 2010).

25

Main Limitations of RNNs

Information Morphing:

• State Transformation: Information (st) changes from one state to
another, potentially losing key information from the distant past.

• Dual Learning Challenge:
• Learning to read the previous state.

• Learning to use the current state effectively.
• Known as the degradation problem (He et al., 2015).

Exploding Gradients: Can prevent model training; mitigated by limiting
gradient values (Mikolov, 2012). Vanishing Gradients:

• Challenge in learning long-term dependencies.
• Mitigation strategies: regularization and specific weight initialization

(Pascanu et al., 2013; Xavier-Glorot, Glorot and Bengio, 2010).

25

Main Limitations of RNNs

Information Morphing:

• State Transformation: Information (st) changes from one state to
another, potentially losing key information from the distant past.

• Dual Learning Challenge:
• Learning to read the previous state.
• Learning to use the current state effectively.

• Known as the degradation problem (He et al., 2015).

Exploding Gradients: Can prevent model training; mitigated by limiting
gradient values (Mikolov, 2012). Vanishing Gradients:

• Challenge in learning long-term dependencies.
• Mitigation strategies: regularization and specific weight initialization

(Pascanu et al., 2013; Xavier-Glorot, Glorot and Bengio, 2010).

25

Main Limitations of RNNs

Information Morphing:

• State Transformation: Information (st) changes from one state to
another, potentially losing key information from the distant past.

• Dual Learning Challenge:
• Learning to read the previous state.
• Learning to use the current state effectively.

• Known as the degradation problem (He et al., 2015).

Exploding Gradients: Can prevent model training; mitigated by limiting
gradient values (Mikolov, 2012). Vanishing Gradients:

• Challenge in learning long-term dependencies.
• Mitigation strategies: regularization and specific weight initialization

(Pascanu et al., 2013; Xavier-Glorot, Glorot and Bengio, 2010).

25

Main Limitations of RNNs

Information Morphing:

• State Transformation: Information (st) changes from one state to
another, potentially losing key information from the distant past.

• Dual Learning Challenge:
• Learning to read the previous state.
• Learning to use the current state effectively.

• Known as the degradation problem (He et al., 2015).

Exploding Gradients: Can prevent model training; mitigated by limiting
gradient values (Mikolov, 2012). Vanishing Gradients:

• Challenge in learning long-term dependencies.
• Mitigation strategies: regularization and specific weight initialization

(Pascanu et al., 2013; Xavier-Glorot, Glorot and Bengio, 2010).

25

Main Limitations of RNNs

Information Morphing:

• State Transformation: Information (st) changes from one state to
another, potentially losing key information from the distant past.

• Dual Learning Challenge:
• Learning to read the previous state.
• Learning to use the current state effectively.

• Known as the degradation problem (He et al., 2015).

Exploding Gradients: Can prevent model training; mitigated by limiting
gradient values (Mikolov, 2012).

Vanishing Gradients:

• Challenge in learning long-term dependencies.
• Mitigation strategies: regularization and specific weight initialization

(Pascanu et al., 2013; Xavier-Glorot, Glorot and Bengio, 2010).

25

Main Limitations of RNNs

Information Morphing:

• State Transformation: Information (st) changes from one state to
another, potentially losing key information from the distant past.

• Dual Learning Challenge:
• Learning to read the previous state.
• Learning to use the current state effectively.

• Known as the degradation problem (He et al., 2015).

Exploding Gradients: Can prevent model training; mitigated by limiting
gradient values (Mikolov, 2012). Vanishing Gradients:

• Challenge in learning long-term dependencies.

• Mitigation strategies: regularization and specific weight initialization
(Pascanu et al., 2013; Xavier-Glorot, Glorot and Bengio, 2010).

25

Main Limitations of RNNs

Information Morphing:

• State Transformation: Information (st) changes from one state to
another, potentially losing key information from the distant past.

• Dual Learning Challenge:
• Learning to read the previous state.
• Learning to use the current state effectively.

• Known as the degradation problem (He et al., 2015).

Exploding Gradients: Can prevent model training; mitigated by limiting
gradient values (Mikolov, 2012). Vanishing Gradients:

• Challenge in learning long-term dependencies.
• Mitigation strategies: regularization and specific weight initialization

(Pascanu et al., 2013; Xavier-Glorot, Glorot and Bengio, 2010).

25

Long Short Term Memory

Principles of LSTM Networks

Overcoming Information Morphing:

• Persistent Memory: How to retain important information through
time steps?

• Solution: Introduce a memory mechanism by ”writing down”
information (Hochreiter & Schmidhuber, 1997).

• Instead of replacing states, the model incrementally updates (writes)
them: st+1 = st + ∆st+1.

• Selective Memory Updates:

• Challenge: Ensuring that only relevant changes are captured.
• Selection Mechanisms:

• Write Gate: Determines what to update in the memory.
• Read Gate: Controls what part of the memory to consider for the

current output.
• Forget Gate: Decides which parts of the memory may no longer be

relevant.

26

Principles of LSTM Networks

Overcoming Information Morphing:

• Persistent Memory: How to retain important information through
time steps?

• Solution: Introduce a memory mechanism by ”writing down”
information (Hochreiter & Schmidhuber, 1997).

• Instead of replacing states, the model incrementally updates (writes)
them: st+1 = st + ∆st+1.

• Selective Memory Updates:

• Challenge: Ensuring that only relevant changes are captured.
• Selection Mechanisms:

• Write Gate: Determines what to update in the memory.
• Read Gate: Controls what part of the memory to consider for the

current output.
• Forget Gate: Decides which parts of the memory may no longer be

relevant.

26

Principles of LSTM Networks

Overcoming Information Morphing:

• Persistent Memory: How to retain important information through
time steps?

• Solution: Introduce a memory mechanism by ”writing down”
information (Hochreiter & Schmidhuber, 1997).

• Instead of replacing states, the model incrementally updates (writes)
them: st+1 = st + ∆st+1.

• Selective Memory Updates:

• Challenge: Ensuring that only relevant changes are captured.
• Selection Mechanisms:

• Write Gate: Determines what to update in the memory.
• Read Gate: Controls what part of the memory to consider for the

current output.
• Forget Gate: Decides which parts of the memory may no longer be

relevant.

26

Principles of LSTM Networks

Overcoming Information Morphing:

• Persistent Memory: How to retain important information through
time steps?

• Solution: Introduce a memory mechanism by ”writing down”
information (Hochreiter & Schmidhuber, 1997).

• Instead of replacing states, the model incrementally updates (writes)
them: st+1 = st + ∆st+1.

• Selective Memory Updates:

• Challenge: Ensuring that only relevant changes are captured.
• Selection Mechanisms:

• Write Gate: Determines what to update in the memory.
• Read Gate: Controls what part of the memory to consider for the

current output.
• Forget Gate: Decides which parts of the memory may no longer be

relevant.

26

Principles of LSTM Networks

Overcoming Information Morphing:

• Persistent Memory: How to retain important information through
time steps?

• Solution: Introduce a memory mechanism by ”writing down”
information (Hochreiter & Schmidhuber, 1997).

• Instead of replacing states, the model incrementally updates (writes)
them: st+1 = st + ∆st+1.

• Selective Memory Updates:
• Challenge: Ensuring that only relevant changes are captured.

• Selection Mechanisms:

• Write Gate: Determines what to update in the memory.
• Read Gate: Controls what part of the memory to consider for the

current output.
• Forget Gate: Decides which parts of the memory may no longer be

relevant.

26

Principles of LSTM Networks

Overcoming Information Morphing:

• Persistent Memory: How to retain important information through
time steps?

• Solution: Introduce a memory mechanism by ”writing down”
information (Hochreiter & Schmidhuber, 1997).

• Instead of replacing states, the model incrementally updates (writes)
them: st+1 = st + ∆st+1.

• Selective Memory Updates:
• Challenge: Ensuring that only relevant changes are captured.
• Selection Mechanisms:

• Write Gate: Determines what to update in the memory.
• Read Gate: Controls what part of the memory to consider for the

current output.
• Forget Gate: Decides which parts of the memory may no longer be

relevant.

26

Principles of LSTM Networks

Overcoming Information Morphing:

• Persistent Memory: How to retain important information through
time steps?

• Solution: Introduce a memory mechanism by ”writing down”
information (Hochreiter & Schmidhuber, 1997).

• Instead of replacing states, the model incrementally updates (writes)
them: st+1 = st + ∆st+1.

• Selective Memory Updates:
• Challenge: Ensuring that only relevant changes are captured.
• Selection Mechanisms:

• Write Gate: Determines what to update in the memory.

• Read Gate: Controls what part of the memory to consider for the
current output.

• Forget Gate: Decides which parts of the memory may no longer be
relevant.

26

Principles of LSTM Networks

Overcoming Information Morphing:

• Persistent Memory: How to retain important information through
time steps?

• Solution: Introduce a memory mechanism by ”writing down”
information (Hochreiter & Schmidhuber, 1997).

• Instead of replacing states, the model incrementally updates (writes)
them: st+1 = st + ∆st+1.

• Selective Memory Updates:
• Challenge: Ensuring that only relevant changes are captured.
• Selection Mechanisms:

• Write Gate: Determines what to update in the memory.
• Read Gate: Controls what part of the memory to consider for the

current output.

• Forget Gate: Decides which parts of the memory may no longer be
relevant.

26

Principles of LSTM Networks

Overcoming Information Morphing:

• Persistent Memory: How to retain important information through
time steps?

• Solution: Introduce a memory mechanism by ”writing down”
information (Hochreiter & Schmidhuber, 1997).

• Instead of replacing states, the model incrementally updates (writes)
them: st+1 = st + ∆st+1.

• Selective Memory Updates:
• Challenge: Ensuring that only relevant changes are captured.
• Selection Mechanisms:

• Write Gate: Determines what to update in the memory.
• Read Gate: Controls what part of the memory to consider for the

current output.
• Forget Gate: Decides which parts of the memory may no longer be

relevant.

26

Long Short Term Memory - Gate Functions

LSTM Gate Functions:
• Write Gate (it): Determines new

information to be stored in the cell
state. it = σ(Wist−1 + Uixt + bi)

• Read Gate (ot): Controls what to
output based on cell state.
ot = σ(Wost−1 + Uoxt + bo)

• Forget Gate (ft): Decides what to
discard from the cell state.
ft = σ(Wf st−1 + Uf xt + bf)

• Cell State Update:

• New candidate values:
s̃t = ϕ(Wc(ot ⊙ st−1) + Ucxt + bc)

• Final cell state:
st = ft ⊙ st−1 + it ⊙ s̃t

figurePrototype LSTM Cell.
Credit: R2Rt blog

27

Long Short Term Memory - Gate Functions

LSTM Gate Functions:
• Write Gate (it): Determines new

information to be stored in the cell
state. it = σ(Wist−1 + Uixt + bi)

• Read Gate (ot): Controls what to
output based on cell state.
ot = σ(Wost−1 + Uoxt + bo)

• Forget Gate (ft): Decides what to
discard from the cell state.
ft = σ(Wf st−1 + Uf xt + bf)

• Cell State Update:

• New candidate values:
s̃t = ϕ(Wc(ot ⊙ st−1) + Ucxt + bc)

• Final cell state:
st = ft ⊙ st−1 + it ⊙ s̃t

figurePrototype LSTM Cell.
Credit: R2Rt blog

27

Long Short Term Memory - Gate Functions

LSTM Gate Functions:
• Write Gate (it): Determines new

information to be stored in the cell
state. it = σ(Wist−1 + Uixt + bi)

• Read Gate (ot): Controls what to
output based on cell state.
ot = σ(Wost−1 + Uoxt + bo)

• Forget Gate (ft): Decides what to
discard from the cell state.
ft = σ(Wf st−1 + Uf xt + bf)

• Cell State Update:

• New candidate values:
s̃t = ϕ(Wc(ot ⊙ st−1) + Ucxt + bc)

• Final cell state:
st = ft ⊙ st−1 + it ⊙ s̃t

figurePrototype LSTM Cell.
Credit: R2Rt blog

27

Long Short Term Memory - Gate Functions

LSTM Gate Functions:
• Write Gate (it): Determines new

information to be stored in the cell
state. it = σ(Wist−1 + Uixt + bi)

• Read Gate (ot): Controls what to
output based on cell state.
ot = σ(Wost−1 + Uoxt + bo)

• Forget Gate (ft): Decides what to
discard from the cell state.
ft = σ(Wf st−1 + Uf xt + bf)

• Cell State Update:

• New candidate values:
s̃t = ϕ(Wc(ot ⊙ st−1) + Ucxt + bc)

• Final cell state:
st = ft ⊙ st−1 + it ⊙ s̃t

figurePrototype LSTM Cell.
Credit: R2Rt blog

27

Long Short Term Memory - Gate Functions

LSTM Gate Functions:
• Write Gate (it): Determines new

information to be stored in the cell
state. it = σ(Wist−1 + Uixt + bi)

• Read Gate (ot): Controls what to
output based on cell state.
ot = σ(Wost−1 + Uoxt + bo)

• Forget Gate (ft): Decides what to
discard from the cell state.
ft = σ(Wf st−1 + Uf xt + bf)

• Cell State Update:
• New candidate values:

s̃t = ϕ(Wc(ot ⊙ st−1) + Ucxt + bc)

• Final cell state:
st = ft ⊙ st−1 + it ⊙ s̃t

figurePrototype LSTM Cell.
Credit: R2Rt blog

27

Long Short Term Memory - Gate Functions

LSTM Gate Functions:
• Write Gate (it): Determines new

information to be stored in the cell
state. it = σ(Wist−1 + Uixt + bi)

• Read Gate (ot): Controls what to
output based on cell state.
ot = σ(Wost−1 + Uoxt + bo)

• Forget Gate (ft): Decides what to
discard from the cell state.
ft = σ(Wf st−1 + Uf xt + bf)

• Cell State Update:
• New candidate values:

s̃t = ϕ(Wc(ot ⊙ st−1) + Ucxt + bc)
• Final cell state:

st = ft ⊙ st−1 + it ⊙ s̃t

figurePrototype LSTM Cell.
Credit: R2Rt blog

27

State-of-the-Art Applications of LSTM (or extentions)

1. Sentiment Analysis:
• LSTM networks, often in combination with word embeddings, have

set new benchmarks in sentiment analysis tasks.
• SST-2 dataset (Radford et al., 2017), IMDb (Gray et al., 2017)

2. Machine Translation (MT):
• LSTM-based models were pivotal in advancing the performance of

neural machine translation systems.
• English - German (Luong et al., 2015), English-French (Cho et al.,

2014)

3. Language Modelling:
• LSTMs have been successfully applied in language modelling,

reducing text perplexity substantially.
• WikiText-103 dataset (Rae et al., 2018), TreeBank dataset (Aharoni

et al., 2015)
28

LSTM for IMDb classification (1/3)

Generating a Classificaiton model with LSTM architecture

Using Python’s keras library to apply a LSTM-based model.

Python Code, source: Keras

import numpy as np
import keras
from keras import layers

max_features = 20000 # Only consider the top 20k words
maxlen = 200 # Only consider the first 200 words of each movie review

29

LSTM for IMDb classification (2/3)

Input for variable-length sequences of integers
inputs = keras.Input(shape=(None,), dtype="int32")
Embed each integer in a 128-dimensional vector
x = layers.Embedding(max_features, 128)(inputs)
Add 2 bidirectional LSTMs
x = layers.Bidirectional(layers.LSTM(64, return_sequences=True))(x)
x = layers.Bidirectional(layers.LSTM(64))(x)
Add a classifier
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.summary()

30

LSTM for IMDb classification (3/3)

Python Code to train, source: Keras

(x_train, y_train), (x_val, y_val) = keras.datasets.imdb.load_data(
num_words=max_features
)

Use pad_sequence to standardize sequence length:
this will truncate sequences longer than 200 words
and zero-pad sequences shorter than 200 words.
x_train = keras.utils.pad_sequences(x_train, maxlen=maxlen)
x_val = keras.utils.pad_sequences(x_val, maxlen=maxlen)

model.compile(optimizer="adam", loss="binary_crossentropy",
metrics=["accuracy"])

model.fit(x_train, y_train, batch_size=32, epochs=2,
validation_data=(x_val, y_val))

31

Main Limitations of LSTM & Related Works

Limitations of LSTM:

• Lack of Coordination: Forget and write gates may lack
coordination, leading to unnecessarily large state sizes.

• Unbounded State: Gates and candidate states can become
saturated, affecting the model’s performance.

Extensions and Variants:

• Normalized Prototype & GRU (Cho et al., 2014): Introduce
bounds to prevent saturation, simplifying the architecture.

• LSTM Variants:

• Basic LSTM: Standard implementation in frameworks like Keras,
TensorFlow, or PyTorch.

• LSTM hiccup: to limit states saturation in the basic LSTM.
• LSTM with Peepholes (Graves, 2013): Incorporates peephole

connections to enhance the model’s memory capability.

32

Main Limitations of LSTM & Related Works

Limitations of LSTM:

• Lack of Coordination: Forget and write gates may lack
coordination, leading to unnecessarily large state sizes.

• Unbounded State: Gates and candidate states can become
saturated, affecting the model’s performance.

Extensions and Variants:

• Normalized Prototype & GRU (Cho et al., 2014): Introduce
bounds to prevent saturation, simplifying the architecture.

• LSTM Variants:

• Basic LSTM: Standard implementation in frameworks like Keras,
TensorFlow, or PyTorch.

• LSTM hiccup: to limit states saturation in the basic LSTM.
• LSTM with Peepholes (Graves, 2013): Incorporates peephole

connections to enhance the model’s memory capability.

32

Main Limitations of LSTM & Related Works

Limitations of LSTM:

• Lack of Coordination: Forget and write gates may lack
coordination, leading to unnecessarily large state sizes.

• Unbounded State: Gates and candidate states can become
saturated, affecting the model’s performance.

Extensions and Variants:

• Normalized Prototype & GRU (Cho et al., 2014): Introduce
bounds to prevent saturation, simplifying the architecture.

• LSTM Variants:

• Basic LSTM: Standard implementation in frameworks like Keras,
TensorFlow, or PyTorch.

• LSTM hiccup: to limit states saturation in the basic LSTM.
• LSTM with Peepholes (Graves, 2013): Incorporates peephole

connections to enhance the model’s memory capability.

32

Main Limitations of LSTM & Related Works

Limitations of LSTM:

• Lack of Coordination: Forget and write gates may lack
coordination, leading to unnecessarily large state sizes.

• Unbounded State: Gates and candidate states can become
saturated, affecting the model’s performance.

Extensions and Variants:

• Normalized Prototype & GRU (Cho et al., 2014): Introduce
bounds to prevent saturation, simplifying the architecture.

• LSTM Variants:

• Basic LSTM: Standard implementation in frameworks like Keras,
TensorFlow, or PyTorch.

• LSTM hiccup: to limit states saturation in the basic LSTM.
• LSTM with Peepholes (Graves, 2013): Incorporates peephole

connections to enhance the model’s memory capability.

32

Main Limitations of LSTM & Related Works

Limitations of LSTM:

• Lack of Coordination: Forget and write gates may lack
coordination, leading to unnecessarily large state sizes.

• Unbounded State: Gates and candidate states can become
saturated, affecting the model’s performance.

Extensions and Variants:

• Normalized Prototype & GRU (Cho et al., 2014): Introduce
bounds to prevent saturation, simplifying the architecture.

• LSTM Variants:
• Basic LSTM: Standard implementation in frameworks like Keras,

TensorFlow, or PyTorch.

• LSTM hiccup: to limit states saturation in the basic LSTM.
• LSTM with Peepholes (Graves, 2013): Incorporates peephole

connections to enhance the model’s memory capability.

32

Main Limitations of LSTM & Related Works

Limitations of LSTM:

• Lack of Coordination: Forget and write gates may lack
coordination, leading to unnecessarily large state sizes.

• Unbounded State: Gates and candidate states can become
saturated, affecting the model’s performance.

Extensions and Variants:

• Normalized Prototype & GRU (Cho et al., 2014): Introduce
bounds to prevent saturation, simplifying the architecture.

• LSTM Variants:
• Basic LSTM: Standard implementation in frameworks like Keras,

TensorFlow, or PyTorch.
• LSTM hiccup: to limit states saturation in the basic LSTM.

• LSTM with Peepholes (Graves, 2013): Incorporates peephole
connections to enhance the model’s memory capability.

32

Main Limitations of LSTM & Related Works

Limitations of LSTM:

• Lack of Coordination: Forget and write gates may lack
coordination, leading to unnecessarily large state sizes.

• Unbounded State: Gates and candidate states can become
saturated, affecting the model’s performance.

Extensions and Variants:

• Normalized Prototype & GRU (Cho et al., 2014): Introduce
bounds to prevent saturation, simplifying the architecture.

• LSTM Variants:
• Basic LSTM: Standard implementation in frameworks like Keras,

TensorFlow, or PyTorch.
• LSTM hiccup: to limit states saturation in the basic LSTM.
• LSTM with Peepholes (Graves, 2013): Incorporates peephole

connections to enhance the model’s memory capability. 32

Introduction to Language Modeling

What is Language Modeling?

• The task of predicting the probability of a sequence of words.

• Serving as the foundation for various applications like text
generation, machine translation, and speech recognition.

Formal Definition:

• Given a sequence of words w1, w2, ..., wn, a LM computes the
probability P(w1, w2, ..., wn).

• With probability’s chain rule:
P(w1:n) = ∏n

i=1 P(wi |w1, w2, ..., wi−1).

Importance of Language Modeling:

• Enables NLP systems in generating human-like language.
• Used to train BERT and GPT-like models.

33

Introduction to Language Modeling

What is Language Modeling?

• The task of predicting the probability of a sequence of words.
• Serving as the foundation for various applications like text

generation, machine translation, and speech recognition.

Formal Definition:

• Given a sequence of words w1, w2, ..., wn, a LM computes the
probability P(w1, w2, ..., wn).

• With probability’s chain rule:
P(w1:n) = ∏n

i=1 P(wi |w1, w2, ..., wi−1).

Importance of Language Modeling:

• Enables NLP systems in generating human-like language.
• Used to train BERT and GPT-like models.

33

Introduction to Language Modeling

What is Language Modeling?

• The task of predicting the probability of a sequence of words.
• Serving as the foundation for various applications like text

generation, machine translation, and speech recognition.

Formal Definition:

• Given a sequence of words w1, w2, ..., wn, a LM computes the
probability P(w1, w2, ..., wn).

• With probability’s chain rule:
P(w1:n) = ∏n

i=1 P(wi |w1, w2, ..., wi−1).

Importance of Language Modeling:

• Enables NLP systems in generating human-like language.
• Used to train BERT and GPT-like models.

33

Introduction to Language Modeling

What is Language Modeling?

• The task of predicting the probability of a sequence of words.
• Serving as the foundation for various applications like text

generation, machine translation, and speech recognition.

Formal Definition:

• Given a sequence of words w1, w2, ..., wn, a LM computes the
probability P(w1, w2, ..., wn).

• With probability’s chain rule:
P(w1:n) = ∏n

i=1 P(wi |w1, w2, ..., wi−1).

Importance of Language Modeling:

• Enables NLP systems in generating human-like language.
• Used to train BERT and GPT-like models.

33

Introduction to Language Modeling

What is Language Modeling?

• The task of predicting the probability of a sequence of words.
• Serving as the foundation for various applications like text

generation, machine translation, and speech recognition.

Formal Definition:

• Given a sequence of words w1, w2, ..., wn, a LM computes the
probability P(w1, w2, ..., wn).

• With probability’s chain rule:
P(w1:n) = ∏n

i=1 P(wi |w1, w2, ..., wi−1).

Importance of Language Modeling:

• Enables NLP systems in generating human-like language.

• Used to train BERT and GPT-like models.

33

Introduction to Language Modeling

What is Language Modeling?

• The task of predicting the probability of a sequence of words.
• Serving as the foundation for various applications like text

generation, machine translation, and speech recognition.

Formal Definition:

• Given a sequence of words w1, w2, ..., wn, a LM computes the
probability P(w1, w2, ..., wn).

• With probability’s chain rule:
P(w1:n) = ∏n

i=1 P(wi |w1, w2, ..., wi−1).

Importance of Language Modeling:

• Enables NLP systems in generating human-like language.
• Used to train BERT and GPT-like models. 33

Language Model as Next Token Prediction
Next Token Prediction:

• P(w1:n) = ∏n
i=1 P(wi |w1, w2, ..., wi−1)

• Focus on Next Token Prediction,
P(wi |w1, w2, ..., wi−1): predict the
next word given previous ones.

With RNNs:
• Input: Sequence of tokens. ”I saw a

cart on a”, the model receives ”I”,
”saw”, ”a”, ”cat”, ”on”, ”a” as input
one after the other.

• Output: At each step, the RNN
predicts the probability distribution of
the next token. Here ”mat”

Credit: Lena Voita

34

Illustration of Language Model with RNNs

Next Token Prediction with top-5 proposition when training a
model:

Credit: Karpathy

35

From Language Modeling to Word Embeddings with RNN
(1/2)

Language Modeling with RNN:

• RNNs are a powerful tool for language modeling, capturing the
sequential nature and dependencies between words in text data.

• Traditionally, words were represented as one-hot vectors, where each
word is represented as a vector of the size of the vocabulary with all
zeros except for a single one at the index of the word.

Limitations of One-Hot Representations:

• Sparsity: One-hot vectors are sparse and do not capture any
semantic/contextual information.

• Dimensionality: The dimension of one-hot vectors grows with the
size of the vocabulary, leading to scalability issues.

36

From Language Modeling to Word Embeddings with RNN
(1/2)

Language Modeling with RNN:

• RNNs are a powerful tool for language modeling, capturing the
sequential nature and dependencies between words in text data.

• Traditionally, words were represented as one-hot vectors, where each
word is represented as a vector of the size of the vocabulary with all
zeros except for a single one at the index of the word.

Limitations of One-Hot Representations:

• Sparsity: One-hot vectors are sparse and do not capture any
semantic/contextual information.

• Dimensionality: The dimension of one-hot vectors grows with the
size of the vocabulary, leading to scalability issues.

36

From Language Modeling to Word Embeddings with RNN
(1/2)

Language Modeling with RNN:

• RNNs are a powerful tool for language modeling, capturing the
sequential nature and dependencies between words in text data.

• Traditionally, words were represented as one-hot vectors, where each
word is represented as a vector of the size of the vocabulary with all
zeros except for a single one at the index of the word.

Limitations of One-Hot Representations:

• Sparsity: One-hot vectors are sparse and do not capture any
semantic/contextual information.

• Dimensionality: The dimension of one-hot vectors grows with the
size of the vocabulary, leading to scalability issues.

36

From Language Modeling to Word Embeddings with RNN
(1/2)

Language Modeling with RNN:

• RNNs are a powerful tool for language modeling, capturing the
sequential nature and dependencies between words in text data.

• Traditionally, words were represented as one-hot vectors, where each
word is represented as a vector of the size of the vocabulary with all
zeros except for a single one at the index of the word.

Limitations of One-Hot Representations:

• Sparsity: One-hot vectors are sparse and do not capture any
semantic/contextual information.

• Dimensionality: The dimension of one-hot vectors grows with the
size of the vocabulary, leading to scalability issues.

36

From Language Modeling to Word Embeddings with RNN
(1/2)

Language Modeling with RNN:

• RNNs are a powerful tool for language modeling, capturing the
sequential nature and dependencies between words in text data.

• Traditionally, words were represented as one-hot vectors, where each
word is represented as a vector of the size of the vocabulary with all
zeros except for a single one at the index of the word.

Limitations of One-Hot Representations:

• Sparsity: One-hot vectors are sparse and do not capture any
semantic/contextual information.

• Dimensionality: The dimension of one-hot vectors grows with the
size of the vocabulary, leading to scalability issues.

36

From Language Modeling to Word Embeddings with RNN
(2/2)

Transition to Dense Word Embeddings:

• RNNs, coupled with language modeling, can be used to learn dense
word vectors, also known as word embeddings.

• Richer Representations: Word embeddings capture more than just
the identity of words; they encode semantic meaning and context.

• Efficiency: Embeddings are lower-dimensional and dense,
addressing the issues of sparsity and high dimensionality in one-hot
representations.

Upcoming Session: We will delve deeper into the world of word
embeddings, exploring how they revolutionize the understanding and
representation of words in NLP models.

37

From Language Modeling to Word Embeddings with RNN
(2/2)

Transition to Dense Word Embeddings:

• RNNs, coupled with language modeling, can be used to learn dense
word vectors, also known as word embeddings.

• Richer Representations: Word embeddings capture more than just
the identity of words; they encode semantic meaning and context.

• Efficiency: Embeddings are lower-dimensional and dense,
addressing the issues of sparsity and high dimensionality in one-hot
representations.

Upcoming Session: We will delve deeper into the world of word
embeddings, exploring how they revolutionize the understanding and
representation of words in NLP models.

37

From Language Modeling to Word Embeddings with RNN
(2/2)

Transition to Dense Word Embeddings:

• RNNs, coupled with language modeling, can be used to learn dense
word vectors, also known as word embeddings.

• Richer Representations: Word embeddings capture more than just
the identity of words; they encode semantic meaning and context.

• Efficiency: Embeddings are lower-dimensional and dense,
addressing the issues of sparsity and high dimensionality in one-hot
representations.

Upcoming Session: We will delve deeper into the world of word
embeddings, exploring how they revolutionize the understanding and
representation of words in NLP models.

37

From Language Modeling to Word Embeddings with RNN
(2/2)

Transition to Dense Word Embeddings:

• RNNs, coupled with language modeling, can be used to learn dense
word vectors, also known as word embeddings.

• Richer Representations: Word embeddings capture more than just
the identity of words; they encode semantic meaning and context.

• Efficiency: Embeddings are lower-dimensional and dense,
addressing the issues of sparsity and high dimensionality in one-hot
representations.

Upcoming Session: We will delve deeper into the world of word
embeddings, exploring how they revolutionize the understanding and
representation of words in NLP models.

37

From Language Modeling to Word Embeddings with RNN
(2/2)

Transition to Dense Word Embeddings:

• RNNs, coupled with language modeling, can be used to learn dense
word vectors, also known as word embeddings.

• Richer Representations: Word embeddings capture more than just
the identity of words; they encode semantic meaning and context.

• Efficiency: Embeddings are lower-dimensional and dense,
addressing the issues of sparsity and high dimensionality in one-hot
representations.

Upcoming Session: We will delve deeper into the world of word
embeddings, exploring how they revolutionize the understanding and
representation of words in NLP models.

37

QA

Open Discussion

• Feel free to ask questions or share your thoughts about today’s
topics.

• Any insights, experiences, or perspectives you’d like to discuss are
welcome.

38

Summary of Key Takeaways

• Neural Networks: Explored the fundamentals of Neural Networks,
including Vanilla Networks, Backpropagation, and Gradient Descent.

• Gradient issues: Illustrated the the issues of vanishing and
exploding gradients and gave some paths to avoid it.

• RNNs: Discussed the significance of RNNs in handling sequential
data and their applications in tasks like language modeling and
machine translation.

• LSTM: Introduced the concept of gates (Write, Read, Forget) to
control the flow of information.

• Language Modeling: Introduced it with RNNs: how are used for
language modeling, emphasizing their ability to capture long-term
dependencies.

39

	Introduction
	Neural Networks
	Gradient Descent Algorithm
	Apply Gradient Descent Algorithm
	Complex Models
	Recurrent Neural Networks
	Recurrent Neural Networks - General
	Vanilla Recurrent Neural Network
	Long Short Term Memory

