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Introduction



Introduction to Deep Learning

Today’s Focus: Understanding the Core of Neural Networks

• Neural Networks Basics: Exploring the structure and function of
simple neural networks.

• Gradient Descent and Backpropagation: Unveiling how neural
networks learn and optimize.

Advancing to Complex Models

• Recurrent Neural Networks (RNNs): Delving into the handling
of sequential data.

• Long Short-Term Memory (LSTM) Networks: Understanding
how LSTMs tackle the limitations of traditional RNNs.

• Language Models: Introducing and exploring basic language
models.
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Neural Networks



Introduction to Neural Networks

• Diverse Network Types: Neural Networks encompass various
architectures, each suited to specific tasks.

• Multi-layer Perceptrons (MLPs): Basic form of NNs.
• Recurrent Neural Networks (RNNs): Ideal for sequential data like text

(Rumelhart et al., 1986).
• Convolutional Neural Networks (CNNs): Specialized in processing

structured grid data like images (LeCun et al., 1989).
• Transformers: NLP Revolution with attention mechanisms (Vaswani

et al., 2017).
• Understanding the Basics: Before delving into complex models,

it’s crucial to grasp the foundational principles.
• Avoiding the ”black box” approach
• Blind feature engineering without algorithmic understanding.

• Vanilla Neural Networks: Also known as single-layer
backpropagation networks, these form the cornerstone of more
complex architectures. 3



Vanilla Neural Networks

• K-Class Classification: With K
targets Yk , k ∈ [1, K ].

• Hidden Units Zm:

• Formed from a linear combination of
inputs Xp.

• Zm = σ(α0m + αT
mX )∀m ∈ [1, M].

• Linear Combination for Tk :

• Tk = β0k + βT
k Z∀k ∈ [1, K ].

• Output Function Yk :

• Softmax function applied to Tk .
• Yk = eTk∑K

l=1
eTl

∀k ∈ [1, K ].

Credit: Hastie et al. (2009)
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Vanilla Neural Networks: The Role of Non-Linearity

• Identity Function σ(v) = v : Reduces
to a linear model; typically used in
output layers for regression.

• Rectified Linear Unit (ReLU)
σ(v) = max(0, v): Popular for deep
networks.

• Sigmoid Function σ(v) = 1
1+e−v :

Commonly used, depicted on the right.
• Hyperbolic Tangent σ(v) = tanh(v):

Similar to sigmoid but ranges from -1
to 1.

• Others: Various options available in
deep learning libraries like Keras.

Credit: Hastie et al. (2009)
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Fitting the Vanilla Neural Network - Classification Problem

• Hidden Layer (∀m in [1, M]):
Zm = σ(α0m + αT

mX )
• Output Layer (∀k in [1, K]):

Tk = β0k + βT
k Z

• Softmax Output (∀k in [1, K]):
Yk = eTk∑K

l=1 eTl
= fk(X )

Dimensionality and Loss Function
• α0m ∈ RM , αm ∈ RM×p, β0k ∈ RK ,

βk ∈ RM×K .
• Total Weights to Optimize (θ):

M(p + 1) + K (M + 1).
• L(θ) = −

∑K
k=1 yk log(fk(x))

• L(θ) = −
∑N

i=1
∑K

k=1 yik log(fk(xi))

Credit: Hastie et al. (2009)
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Gradient Descent Algorithm



Introduction to Gradient Descent

• Popular Optimization Algorithm: Widely used for function
optimization, for logistic regression or NNs.

• Neural Network Optimization: As highlighted by Ruder (2020),
it’s the most common method for optimizing neural networks.

• Widespread Implementation: Integral to many libraries like
TensorFlow, Keras, PyTorch, and Caffe, often utilized as
”black-boxes.”

• Objective: Minimizes loss function L(θ) parameterized by θ ∈ Rd .
• Types of Gradient Descent:

• Batch Gradient Descent (Vanilla): Uses the entire dataset for each
update.

• Stochastic Gradient Descent: Updates parameters for each training
example.

• Mini-batch Gradient Descent: Strikes a balance using subsets of the
dataset.

7
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Batch Gradient Descent (Vanilla)

Update Rule:

θ = θ − η∇θL(θ)

with η as the learning rate.

Direction of Update: Updates parameters
in the opposite direction to the gradient
of the objective function ∇θL(θ).

Analogy: Similar to descending a mountain
to reach a valley, considering the slope to
find the optimal path.

Limitation: Requires processing the entire
dataset for each update, problematic for
large datasets due to memory constraints.

Credit: Imad Daburra
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Stochastic Gradient Descent

Update for Each Observation: Applies
the gradient descent update rule for each
observation individually, chosen randomly.

Update Rule:

θ = θ − η∇θL(θ, xi , yi)

Advantages: Faster updates, suitable for
online learning, and better exploration of
minima compared to batch gradient
descent.

Challenge: Tendency to oscillate around or
even overshoot minima. Reducing η over
time can mitigate this issue.

Credit: Wikipedia
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Mini-batch Gradient Descent

Combining the Best of Both Worlds!
Update Rule:

θ = θ − η∇θL(θ, xi :i+n, yi :i+n)

Reduced Variance: Balances the variance
of updates: more stable convergence than
SGD.

Efficiency: Tends to be faster than Batch
Gradient Descent, particularly for large
datasets.

Widely Adopted: Often the preferred
choice in practical applications and deep
learning frameworks.

Credit: Imad Daburra
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Main Challenges in Gradient Descent

• Optimizing Learning Rate:

• Too Low : Slow convergence.
• Too High: May lead to divergence.

• Adaptive Learning Rates:

• Dynamic Adjustments: Varying the rate during exploration and
refinement phases.

• Examples: Momentum (Qian, 1999), Nesterov accelerated gradient
(Nesterov, 1983).

• Parameter-Specific Learning Rates:

• Individual learning rates for different parameters.
• Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.),

Adam (Kingma et al., 2015).

• Non-Convex Functions:

• Gradient descent can struggle with complex, non-convex functions
typical in deep neural networks.

• Issue: Getting trapped in local minima.
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Apply Gradient Descent Algorithm



Applying the Gradient Descent Algorithm

• Loss Function:

L(θ) = −
K∑

k=1

N∑
i=1

yik log(fk(xi))

• Optimization Algorithm:

θ = θ − η∇θL(θ, xi :i+n, yi :i+n)

• Parameter Dimensions:

• α0m ∈ RM , αm ∈ RM×p

• β0 ∈ RK , βk ∈ RM×K

• Understanding the Chain Rule:
∂f (x)

∂z = ∂f (x)
∂t

∂t
∂z

Key to computing gradients for backpropagation.
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Application to a Single-Layer Neural Network

Classification Problem Formulation:

• For each hidden unit m in [1, M]: Zm = σ(α0m + αT
mX )

• For each output unit k in [1, K ]: Tk = β0k + βT
k Z

• For the softmax output: Yk = eTk∑K
l=1 eTl

= gk(T ) = fk(X )
• Loss function:

L(θ) = −
K∑

k=1

N∑
i=1

yik log(fk(xi))

Applying the Chain Rule to Compute Gradients for βk :

• Gradient of the loss function with respect to βk :
∂L(θ)
∂βk

= − ∂

∂βk

K∑
j=1

N∑
i=1

yij log(fj(xi))
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Derivatives of βk - Part 1

∂L(θ)
∂βk

= −
K∑

j=1
Yj

∂ log(Ŷj)
∂βk

= −
K∑

j=1
Yj

(
∂Tj
∂βk

− ∂ log(∑K
l=1 eTl )

∂βk

)

= −
K∑

j=1
Yj

(
1j=kZT − eTk ZT∑K

l=1 eTl

)

= −
K∑

j=1
Yj
(
1j=kZT − ŶkZT

)
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Derivatives of βk - Part 2

∂L(θ)
∂βk

= −
K∑

j=1
Yj
(
1j=kZT − ŶkZT

)

=

 K∑
j=1

Yj Ŷk −
K∑

j=1
Yj1j=k

ZT

=

Ŷk

K∑
j=1

Yj − Yk

ZT

=
(
Ŷk − Yk

)
ZT

βr+1
k = βr

k − η
∂L(θ)
∂βk

βr+1
k = βr

k − η
(
Ŷk − Yk

)
ZT
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Backpropagation: Understanding the Chain Rule

The Chain Rule in Neural Networks:
• Fundamental to backpropagation:

∂f (x)
∂z = ∂f (x)

∂s
∂s
∂z

• downstream gradient = upstream
gradient × local gradient.

• This principle encounters challenges:
• Vanishing Gradient: Gradients

become very small, hindering
learning.

• Exploding Gradient: Gradients grow
too large, leading to unstable
learning.

• It can prevent the model from learning!

Credit: Christopher Manning
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Understanding Vanishing Gradient

• When gradients become increasingly
small as they are propagated back
through the layers.

• Especially in networks with many
layers.

Illustrative Example:
• Consider a deep NN with sigmoid.
• Sigmoid gradients in (0, 0.25].
• Multiplying many such small values

(chain rule!) makes the gradient
increasingly smaller.

Consequence:
• Lower layers of the network learn very

slowly, making training ineffective.

Sigmoid and its derivative

17



Understanding Exploding Gradient

• When gradients become excessively
large: model weights oscillate wildly.

• Often seen in NN with improper
initialization or high learning rates.

Illustrative Example:
• NN with large weight values and high

learning rates.
• Small changes in input lead to large

changes in the output.
• Gradients can grow exponentially

during backpropagation through layers.
Consequence:

• Results in unstable training: weights
diverge and NN fail to converge.

ReLU and its derivative

18



Complex Models



Recurrent Neural Networks



Introduction to Recurrent Neural Networks (RNNs)

Overview of RNNs:

• RNNs, introduced by Rumelhart et al. (1986), are powerful networks
for sequential data processing.

• Key Models: Vanilla RNNs and Long Short-Term Memory (LSTM)
networks.

• State-of-the-art in various NLP tasks (e.g., machine translation, text
generation) before the advent of Transformers and BERT models.
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Introduction to Recurrent Neural Networks (RNNs)

Motivation for Using RNNs:

• Sequential Data Processing:
• Traditional feed-forward networks are not optimized for sequential

data like text or time series.
• RNNs are designed to handle data where variables are interlinked

sequentially.
• Example - Text Analysis:

• For a word like ”mathematics,” tokenized as ”m, a, t, h, e, m, a, t, i,
c, s,” RNNs can capture the sequence’s inherent dependencies.

• This sequential understanding is crucial for tasks like language
modeling and translation.

20



Recurrent Neural Networks -
General



What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.

• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:

• External Output: Can be used or ignored
depending on the application.

• Internal Output: The state passed to the
next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21



What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.
• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:

• External Output: Can be used or ignored
depending on the application.

• Internal Output: The state passed to the
next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21



What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.
• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:

• External Output: Can be used or ignored
depending on the application.

• Internal Output: The state passed to the
next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21



What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.
• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:

• External Output: Can be used or ignored
depending on the application.

• Internal Output: The state passed to the
next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21



What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.
• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:

• External Output: Can be used or ignored
depending on the application.

• Internal Output: The state passed to the
next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21



What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.
• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:
• External Output: Can be used or ignored

depending on the application.

• Internal Output: The state passed to the
next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21



What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.
• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:
• External Output: Can be used or ignored

depending on the application.
• Internal Output: The state passed to the

next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21



What is a Recurrent Neural Network?

Characteristics of RNNs:
• Composed of identical units resembling

feed-forward neural networks.
• Inputs for Each Cell:

• External Input (optional): For ex.,
characters in a word like p,h,o,n,e.

• Internal Input: The state output from the
previous cell.

• Outputs for Each Cell:
• External Output: Can be used or ignored

depending on the application.
• Internal Output: The state passed to the

next cell.

• Functions by passing states from one cell
to the next in a sequence.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog

21



Mathematical Description of a Recurrent Neural Network

Mathematical Formulation:(
st

ot

)
= f

((
st−1

xt

))

Where:
• st and st−1 are the current and previous

states, respectively.

• ot is the output at time t.
• xt is the current input (optional).
• f represents the recurrent function,

defining how the next state and output are
computed.

Single RNN Cell

Several RNN Cells
Credits: R2Rt blog
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RNNs in Translation Tasks

• RNNs are particularly effective in sequence-to-sequence tasks like
language translation.

• They process sequential inputs and generate sequential outputs,
capturing the nuances of language patterns.

RNN for Translation - Example 1 RNN for Translation - Example 2

Credit: R2Rt blog
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Vanilla Recurrent Neural Network



The Vanilla RNN

Characteristics of the Vanilla RNN:
• Features a single layer with identical

current output and current state.

• Prior and current states have the same
dimension.

Mathematical Description:

• State Update:
st = ϕ(Wst−1 + Uxt + b)

• Activation Function: ϕ

• Dimensions: st , st−1 ∈ Rn, xt ∈ Rm

• Weights: W ∈ Rn×n, U ∈ Rm×n,
b ∈ Rn

The Vanilla RNN.
Credit: R2Rt blog
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Main Limitations of RNNs

Information Morphing:

• State Transformation: Information (st) changes from one state to
another, potentially losing key information from the distant past.

• Dual Learning Challenge:

• Learning to read the previous state.
• Learning to use the current state effectively.

• Known as the degradation problem (He et al., 2015).

Exploding Gradients: Can prevent model training; mitigated by limiting
gradient values (Mikolov, 2012). Vanishing Gradients:

• Challenge in learning long-term dependencies.
• Mitigation strategies: regularization and specific weight initialization

(Pascanu et al., 2013; Xavier-Glorot, Glorot and Bengio, 2010).
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Long Short Term Memory



Principles of LSTM Networks

Overcoming Information Morphing:

• Persistent Memory: How to retain important information through
time steps?

• Solution: Introduce a memory mechanism by ”writing down”
information (Hochreiter & Schmidhuber, 1997).

• Instead of replacing states, the model incrementally updates (writes)
them: st+1 = st + ∆st+1.

• Selective Memory Updates:

• Challenge: Ensuring that only relevant changes are captured.
• Selection Mechanisms:

• Write Gate: Determines what to update in the memory.
• Read Gate: Controls what part of the memory to consider for the

current output.
• Forget Gate: Decides which parts of the memory may no longer be

relevant.
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Long Short Term Memory - Gate Functions

LSTM Gate Functions:
• Write Gate (it): Determines new

information to be stored in the cell
state. it = σ(Wist−1 + Uixt + bi)

• Read Gate (ot): Controls what to
output based on cell state.
ot = σ(Wost−1 + Uoxt + bo)

• Forget Gate (ft): Decides what to
discard from the cell state.
ft = σ(Wf st−1 + Uf xt + bf )

• Cell State Update:

• New candidate values:
s̃t = ϕ(Wc(ot ⊙ st−1) + Ucxt + bc)

• Final cell state:
st = ft ⊙ st−1 + it ⊙ s̃t

figurePrototype LSTM Cell.
Credit: R2Rt blog
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State-of-the-Art Applications of LSTM (or extentions)

1. Sentiment Analysis:
• LSTM networks, often in combination with word embeddings, have

set new benchmarks in sentiment analysis tasks.
• SST-2 dataset (Radford et al., 2017), IMDb (Gray et al., 2017)

2. Machine Translation (MT):
• LSTM-based models were pivotal in advancing the performance of

neural machine translation systems.
• English - German (Luong et al., 2015), English-French (Cho et al.,

2014)

3. Language Modelling:
• LSTMs have been successfully applied in language modelling,

reducing text perplexity substantially.
• WikiText-103 dataset (Rae et al., 2018), TreeBank dataset (Aharoni

et al., 2015)
28



LSTM for IMDb classification (1/3)

Generating a Classificaiton model with LSTM architecture

Using Python’s keras library to apply a LSTM-based model.

Python Code, source: Keras

import numpy as np
import keras
from keras import layers

max_features = 20000 # Only consider the top 20k words
maxlen = 200 # Only consider the first 200 words of each movie review
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LSTM for IMDb classification (2/3)

# Input for variable-length sequences of integers
inputs = keras.Input(shape=(None,), dtype="int32")
# Embed each integer in a 128-dimensional vector
x = layers.Embedding(max_features, 128)(inputs)
# Add 2 bidirectional LSTMs
x = layers.Bidirectional(layers.LSTM(64, return_sequences=True))(x)
x = layers.Bidirectional(layers.LSTM(64))(x)
# Add a classifier
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.summary()
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LSTM for IMDb classification (3/3)

Python Code to train, source: Keras

(x_train, y_train), (x_val, y_val) = keras.datasets.imdb.load_data(
num_words=max_features
)

# Use pad_sequence to standardize sequence length:
# this will truncate sequences longer than 200 words
# and zero-pad sequences shorter than 200 words.
x_train = keras.utils.pad_sequences(x_train, maxlen=maxlen)
x_val = keras.utils.pad_sequences(x_val, maxlen=maxlen)

model.compile(optimizer="adam", loss="binary_crossentropy",
metrics=["accuracy"])

model.fit(x_train, y_train, batch_size=32, epochs=2,
validation_data=(x_val, y_val))
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Main Limitations of LSTM & Related Works

Limitations of LSTM:

• Lack of Coordination: Forget and write gates may lack
coordination, leading to unnecessarily large state sizes.

• Unbounded State: Gates and candidate states can become
saturated, affecting the model’s performance.

Extensions and Variants:

• Normalized Prototype & GRU (Cho et al., 2014): Introduce
bounds to prevent saturation, simplifying the architecture.

• LSTM Variants:

• Basic LSTM: Standard implementation in frameworks like Keras,
TensorFlow, or PyTorch.

• LSTM hiccup: to limit states saturation in the basic LSTM.
• LSTM with Peepholes (Graves, 2013): Incorporates peephole

connections to enhance the model’s memory capability.
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Introduction to Language Modeling

What is Language Modeling?

• The task of predicting the probability of a sequence of words.

• Serving as the foundation for various applications like text
generation, machine translation, and speech recognition.

Formal Definition:

• Given a sequence of words w1, w2, ..., wn, a LM computes the
probability P(w1, w2, ..., wn).

• With probability’s chain rule:
P(w1:n) = ∏n

i=1 P(wi |w1, w2, ..., wi−1).

Importance of Language Modeling:

• Enables NLP systems in generating human-like language.
• Used to train BERT and GPT-like models.
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Language Model as Next Token Prediction
Next Token Prediction:

• P(w1:n) = ∏n
i=1 P(wi |w1, w2, ..., wi−1)

• Focus on Next Token Prediction,
P(wi |w1, w2, ..., wi−1): predict the
next word given previous ones.

With RNNs:
• Input: Sequence of tokens. ”I saw a

cart on a”, the model receives ”I”,
”saw”, ”a”, ”cat”, ”on”, ”a” as input
one after the other.

• Output: At each step, the RNN
predicts the probability distribution of
the next token. Here ”mat”

Credit: Lena Voita
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Illustration of Language Model with RNNs

Next Token Prediction with top-5 proposition when training a
model:

Credit: Karpathy
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From Language Modeling to Word Embeddings with RNN
(1/2)

Language Modeling with RNN:

• RNNs are a powerful tool for language modeling, capturing the
sequential nature and dependencies between words in text data.

• Traditionally, words were represented as one-hot vectors, where each
word is represented as a vector of the size of the vocabulary with all
zeros except for a single one at the index of the word.

Limitations of One-Hot Representations:

• Sparsity: One-hot vectors are sparse and do not capture any
semantic/contextual information.

• Dimensionality: The dimension of one-hot vectors grows with the
size of the vocabulary, leading to scalability issues.
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From Language Modeling to Word Embeddings with RNN
(2/2)

Transition to Dense Word Embeddings:

• RNNs, coupled with language modeling, can be used to learn dense
word vectors, also known as word embeddings.

• Richer Representations: Word embeddings capture more than just
the identity of words; they encode semantic meaning and context.

• Efficiency: Embeddings are lower-dimensional and dense,
addressing the issues of sparsity and high dimensionality in one-hot
representations.

Upcoming Session: We will delve deeper into the world of word
embeddings, exploring how they revolutionize the understanding and
representation of words in NLP models.
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• Richer Representations: Word embeddings capture more than just
the identity of words; they encode semantic meaning and context.

• Efficiency: Embeddings are lower-dimensional and dense,
addressing the issues of sparsity and high dimensionality in one-hot
representations.

Upcoming Session: We will delve deeper into the world of word
embeddings, exploring how they revolutionize the understanding and
representation of words in NLP models.
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QA

Open Discussion

• Feel free to ask questions or share your thoughts about today’s
topics.

• Any insights, experiences, or perspectives you’d like to discuss are
welcome.
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Summary of Key Takeaways

• Neural Networks: Explored the fundamentals of Neural Networks,
including Vanilla Networks, Backpropagation, and Gradient Descent.

• Gradient issues: Illustrated the the issues of vanishing and
exploding gradients and gave some paths to avoid it.

• RNNs: Discussed the significance of RNNs in handling sequential
data and their applications in tasks like language modeling and
machine translation.

• LSTM: Introduced the concept of gates (Write, Read, Forget) to
control the flow of information.

• Language Modeling: Introduced it with RNNs: how are used for
language modeling, emphasizing their ability to capture long-term
dependencies.
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