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Introduction



Introduction to Deep Learning

Today’s Focus: Understanding the Core of Neural Networks

= Neural Networks Basics: Exploring the structure and function of
simple neural networks.

= Gradient Descent and Backpropagation: Unveiling how neural
networks learn and optimize.

Advancing to Complex Models

= Recurrent Neural Networks (RNNs): Delving into the handling
of sequential data.

= Long Short-Term Memory (LSTM) Networks: Understanding
how LSTMs tackle the limitations of traditional RNNs.

= Language Models: Introducing and exploring basic language
models.



Neural Networks



Introduction to Neural Networks

= Diverse Network Types: Neural Networks encompass various
architectures, each suited to specific tasks.
= Multi-layer Perceptrons (MLPs): Basic form of NNs.
= Recurrent Neural Networks (RNNs): ldeal for sequential data like text
(Rumelhart et al., 1986).
= Convolutional Neural Networks (CNNs): Specialized in processing
structured grid data like images (LeCun et al., 1989).
= Transformers: NLP Revolution with attention mechanisms (Vaswani
et al., 2017).
= Understanding the Basics: Before delving into complex models,
it's crucial to grasp the foundational principles.
= Avoiding the "black box"” approach
= Blind feature engineering without algorithmic understanding.
= Vanilla Neural Networks: Also known as single-layer
backpropagation networks, these form the cornerstone of more

complex architectures. 3



Vanilla Neural Networks

= K-Class Classification: With K
targets Y, k € [1, K].

FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network
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Vanilla Neural Networks

= K-Class Classification: With K
targets Y, k € [1, K].

= Hidden Units Z,;:

= Formed from a linear combination of
inputs X,.
» Zp=o(aom +al X)Vm € [1, M].

= Linear Combination for T:
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= Qutput Function Yj:
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Vanilla Neural Networks: The Role of Non-Linearity

= ldentity Function o(v) = v: Reduces
to a linear model; typically used in
output layers for regression.

= Rectified Linear Unit (ReLU) g

o(v) = max(0, v): Popular for deep 2 2
networks. e :

. . - 1 3

= Sigmoid Function o(v) =
FIGURE 11.3. Plot of the sigmoid function o(v) = 1/(1+exp(—v)) (red curve),
H . commonly used in the hidden layer of a neural network. Included are o(sv) for
Commonly used, depicted on the right. o e e v i £ o

the activation rale, and we can see that large s amounts to o hard activation at
v =0. Note that o(s(v — vo)) shifts the activation threshold from 0 to vo.

= Hyperbolic Tangent o(v) = tanh(v):
Y 8 (v) ) Credit: Hastie et al. (2009)

Similar to sigmoid but ranges from -1
to 1.

= QOthers: Various options available in

deep learning libraries like Keras.



Fitting the Vanilla Neural Network - Classification Problem

= Hidden Layer (Vm in [1, M]):
Zm = o(com + aLX)

= Output Layer (Vk in [1, K]):
Tk = Boxk + B{ Z

= Softmax Output (Vk in [1, K]):

_ e’k _
Yi = S f(X)
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Fitting the Vanilla Neural Network - Classification Problem

= Hidden Layer (Vm in [1, M]):
Zm = o(com + aLX)

= Output Layer (Vk in [1, K]):
Tk = Boxk + B{ Z

= Softmax Output (Vk in [1, K]):

_ e’k _
Yi = S f(X)

Dimensionality and Loss Function
= aom € RM, a, € RM*P, By € RK,
6k c RMxK

FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network.

= Total Weights to Optimize (0): Credit: Hastie et al. (2009)
M(p +1) + K(M +1).

= L(0) = — Sk vlog(fiu(x))
o L(0) = — N1 SR v log(fi(xi))
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Introduction to Gradient Descent

= Popular Optimization Algorithm: Widely used for function
optimization, for logistic regression or NNs.

= Neural Network Optimization: As highlighted by Ruder (2020),
it's the most common method for optimizing neural networks.

= Widespread Implementation: Integral to many libraries like
TensorFlow, Keras, PyTorch, and Caffe, often utilized as
"black-boxes."

= Objective: Minimizes loss function L(f) parameterized by 6 € R€.

= Types of Gradient Descent:
= Batch Gradient Descent (Vanilla): Uses the entire dataset for each
update.
= Stochastic Gradient Descent: Updates parameters for each training
example.
= Mini-batch Gradient Descent: Strikes a balance using subsets of the
dataset. 7
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Batch Gradient Descent (Vanilla)

Update Rule:
0=60—nVylL(0)

with 7 as the learning rate.
Jw)
Direction of Update: Updates parameters
V) <0

in the opposite direction to the gradient
of the objective function VyL(0).

Analogy: Similar to descending a mountain !
to reach a valley, considering the slope to Credit: Imad Daburra
find the optimal path.

Limitation: Requires processing the entire
dataset for each update, problematic for
large datasets due to memory constraints. 8
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Stochastic Gradient Descent

Update for Each Observation: Applies
the gradient descent update rule for each
observation individually, chosen randomly.

Update Rule: ”

0 =0—-nVel(0,x;,yi)

Advantages: Faster updates, suitable for e

online learning, and better exploration of

minima compared to batch gradient Credit: Wikipedia
descent.
Challenge: Tendency to oscillate around or

even overshoot minima. Reducing 1 over
time can mitigate this issue.
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Mini-batch Gradient Descent

Combining the Best of Both Worlds!
Update Rule:

0 =0 —nVol(0,Xi-ixn, Yi:itn)

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

Reduced Variance: Balances the variance
of updates: more stable convergence than
SGD.

Efficiency: Tends to be faster than Batch
Gradient Descent, particularly for large

Credit: Imad Daburra

datasets.

Widely Adopted: Often the preferred
choice in practical applications and deep
learning frameworks. 10
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Main Challenges in Gradient Descent

= Optimizing Learning Rate:
= Too Low: Slow convergence.
= Too High: May lead to divergence.
= Adaptive Learning Rates:
= Dynamic Adjustments: Varying the rate during exploration and
refinement phases.
= Examples: Momentum (Qian, 1999), Nesterov accelerated gradient
(Nesterov, 1983).
= Parameter-Specific Learning Rates:
= Individual learning rates for different parameters.
= Techniques: Adagrad (Duchi et al., 2011), RMSprop (Hinton et al.),
Adam (Kingma et al., 2015).
= Non-Convex Functions:
= Gradient descent can struggle with complex, non-convex functions
typical in deep neural networks.

= [ssue: Getting trapped in local minima.
11
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Applying the Gradient Descent Algorithm

= Loss Function:

K N
=3 > yilog(fi(x))

k=1i=1

= Optimization Algorithm:

0=0-— nvﬁL(eaxi:ier}/i:iJrn)

= Parameter Dimensions:
= agm € RM, o, € RMx*p
- BO GRK, Bk c RMXK
= Understanding the Chain Rule:
of(x)  0f(x) ot
9z 9t 0z
Key to computing gradients for backpropagation.

12
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Application to a Single-Layer Neural Network

Classification Problem Formulation:

= For each hidden unit min [1, M]: Z,, = o(aom + o, X)
= For each output unit k in [1,K]: Tk = Box + B Z

ek — —
Z/K:1 el o gk(T) o fk(X)

Zzy/k log(fx(xi))

= For the softmax output: Yy =

= |oss function:

Applying the Chain Rule to Compute Gradients for (:

= Gradient of the loss function with respect to By:

oLb) Z Zyu log(f;

aﬁk_ _j].l].

13



Derivatives of 5, - Part 1

oL®) Y,alog(fﬂ)
B = 0B
oy (2T lea(Sh )
7\ 95 OB
K TkZT
==Y (lj:kZT_ = T)
j=1 ZI:I e’
K
--Yy, (1j_sz _ YkZT)

.
Il
-

14



Derivatives of 5, - Part 2

15



Backpropagation: Understanding the Chain Rule

The Chain Rule in Neural Networks:

= Fundamental to backpropagation:

Of(x) _ Of(x) s

0z Os 0Oz * Multiple inputs - multiple local gradients | 2 = Wa

. w
= downstream gradient = upstream e
9s _0s 0z

gradient x local gradient. oW =9z 0w
= This principle encounters challenges: T
= Vanishing Gradient: Gradients o e
become very small, hindering e e

s
Dz

X

Credit: Christopher Manning

learning.
= Exploding Gradient: Gradients grow
too large, leading to unstable

learning.

= |t can prevent the model from learning!
16



Understanding Vanishing Gradient

= When gradients become increasingly
small as they are propagated back
through the layers.

= Especially in networks with many
layers. o

lllustrative Example:
= Consider a deep NN with sigmoid.
= Sigmoid gradients in (0,0.25].

= Multiplying many such small values

. d and its derivati
(chain rule!) makes the gradient Sigmoid and its derivative

increasingly smaller.
Consequence:

= Lower layers of the network learn very

17
slowly, making training ineffective.



Understanding Exploding Gradient

= When gradients become excessively
large: model weights oscillate wildly.

= Often seen in NN with improper
initialization or high learning rates.

lllustrative Example:

= NN with large weight values and high
learning rates.

= Small changes in input lead to large

changes in the output.

. . RelLU and its derivative
= Gradients can grow exponentially

during backpropagation through layers.
Consequence:

= Results in unstable training: weights s
diverge and NN fail to converge.



Complex Models




Recurrent Neural Networks




Introduction to Recurrent Neural Networks (RNNs)

Overview of RNNs:

= RNNSs, introduced by Rumelhart et al. (1986), are powerful networks
for sequential data processing.

= Key Models: Vanilla RNNs and Long Short-Term Memory (LSTM)
networks.

= State-of-the-art in various NLP tasks (e.g., machine translation, text
generation) before the advent of Transformers and BERT models.

19



Introduction to Recurrent Neural Networks (RNNs)

Motivation for Using RNNs:

= Sequential Data Processing:
= Traditional feed-forward networks are not optimized for sequential

data like text or time series.
= RNNSs are designed to handle data where variables are interlinked

sequentially.
= Example - Text Analysis:
= For a word like "mathematics,” tokenized as "m, a, t, h, e, m, a, t, i,
¢, s,” RNNs can capture the sequence’s inherent dependencies.
= This sequential understanding is crucial for tasks like language

modeling and translation.

20



Recurrent Neural Networks -
General




What is a Recurrent Neural Network?

Characteristics of RNNs:

= Composed of identical units resembling
feed-forward neural networks.

(Optional)
External
Output

Recurrent RNN Recurrent
(Internal) Cell (Internal)
Input Output

(Optional)
External
Input

Single RNN Cell

(Optional): : (Optional): : (Optional)

External External External
Output Output Output
Recurrent Recurrent
(Internal) R an o (internal)
Input Output
(Optional) . (Optional) . (Optional)
External External External
Input Input Input

Several RNN Cells

Credits: R2Rt blog
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What is a Recurrent Neural Network?

Characteristics of RNNs:

(Optional)
External
= Composed of identical units resembling oot
feed-forward neural networks. Recurrent Resuvent
Input Output
= Inputs for Each Cell:
. (Optional)
= External Input (optional): For ex., External
characters in a word like p,h,o,n,e.
|} . .
Internal Input: The state output from the Single RNN Cell
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(Op(mna‘l) (Op[\ona‘l) (g&teu:::})
Ol oupwt  output
(Optional) - (Optional) (gp(lcna:)
o e e
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What is a Recurrent Neural Network?

Characteristics of RNNs:
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Mathematical Description of a Recurrent Neural Network

Mathematical Formulation:
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RNNs in Translation Tasks

= RNNs are particularly effective in sequence-to-sequence tasks like

language translation.

= They process sequential inputs and generate sequential outputs,

capturing the nuances of language patterns.

Initial
RNN
(Blank) >~ CeII #

RNN for Translation - Example 1
Credit: R2Rt blog

et | inchat™ | "e™ | "assith "le" i"chat": "s™ : "assit'

RNN |5 [ RN LS| RNN LS (RN Ly Final ({,1;‘;71,
cell [”] celt [*| cell [| ceil [> state State

RNN for Translation - Example 2

Final
State
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Information Morphing:
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Information Morphing:

» State Transformation: Information (s;) changes from one state to
another, potentially losing key information from the distant past.
= Dual Learning Challenge:
= Learning to read the previous state.
= Learning to use the current state effectively.

= Known as the degradation problem (He et al., 2015).
Exploding Gradients: Can prevent model training; mitigated by limiting
gradient values (Mikolov, 2012). Vanishing Gradients:

= Challenge in learning long-term dependencies.
= Mitigation strategies: regularization and specific weight initialization
(Pascanu et al., 2013; Xavier-Glorot, Glorot and Bengio, 2010).
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Principles of LSTM Networks
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= Persistent Memory: How to retain important information through
time steps?
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time steps?
= Solution: Introduce a memory mechanism by ”writing down”
information (Hochreiter & Schmidhuber, 1997).
= Instead of replacing states, the model incrementally updates (writes)
them: s;y1 = s; + Aspig.
= Selective Memory Updates:
= Challenge: Ensuring that only relevant changes are captured.
= Selection Mechanisms:
= Write Gate: Determines what to update in the memory.
= Read Gate: Controls what part of the memory to consider for the
current output.
= Forget Gate: Decides which parts of the memory may no longer be

relevant.

26



Long Short Term Memory - Gate Functions

LSTM Gate Functions:

= Write Gate (i;): Determines new
information to be stored in the cell
state. iy = o(W;si—1 + Uixt + b;)

RN oyt

Prototype LSTM Cell

figurePrototype LSTM Cell.
Credit: R2Rt blog
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State-of-the-Art Applications of LSTM (or extentions)

1. Sentiment Analysis:
= LSTM networks, often in combination with word embeddings, have

set new benchmarks in sentiment analysis tasks.
= SST-2 dataset (Radford et al., 2017), IMDb (Gray et al., 2017)

2. Machine Translation (MT):
= LSTM-based models were pivotal in advancing the performance of
neural machine translation systems.
= English - German (Luong et al., 2015), English-French (Cho et al.,
2014)

3. Language Modelling:
= LSTMs have been successfully applied in language modelling,
reducing text perplexity substantially.
= WikiText-103 dataset (Rae et al., 2018), TreeBank dataset (Aharoni

et al., 2015)
28



LSTM for IMDb classification (1/3)

Generating a Classificaiton model with LSTM architecture
Using Python's keras library to apply a LSTM-based model.
Python Code, source: Keras

import numpy as np

import keras
from keras import layers

max_features = 20000 # Only consider the top 20k words
maxlen = 200 # Only consider the first 200 words of each movie review

29



LSTM for IMDb classification (2/3)

# Input for variable-length sequences of integers

inputs = keras.Input(shape=(None,), dtype="int32")

Embed each integer in a 128-dimensional vector

= layers.Embedding(max_features, 128) (inputs)

Add 2 bidirectional LSTMs

= layers.Bidirectional (layers.LSTM(64, return_sequences=True)) (x)
= layers.Bidirectional (layers.LSTM(64)) (x)

Add a classifier

H oM M OH X O

outputs = layers.Dense(l, activation="sigmoid") (x)
model = keras.Model (inputs, outputs)
model . summary ()

Model: "functional_ 1"

Layer (type) Output Shape Param #
input_layer (InputLayer) ( B ) 0
embedding (Embedding) ( , , 128) 2,560,000
bidirectional (Bidirectional) ( , , 128) 98,816
bidirectional_1 (Bidirectional) ( , 128) 98,816
dense (Dense) ( , 1) 129 30




LSTM for IMDb classification (3/3)

Python Code to train, source: Keras

(x_train, y_train), (x_val, y_val) = keras.datasets.imdb.load_data(
num_words=max_features

)

# Use pad_sequence to standardize sequence length:

# this will truncate sequences longer than 200 words

# and zero-pad sequences shorter than 200 words.

x_train = keras.utils.pad_sequences(x_train, maxlen=maxlen)
x_val = keras.utils.pad_sequences(x_val, maxlen=maxlen)

model.compile(optimizer="adam", loss="binary_crossentropy",
metrics=["accuracy"])
model.fit(x_train, y_train, batch_size=32, epochs=2,
validation_data=(x_val, y_val))

Epoch 1/2

782/782 —————— 61s 75ms/step — accuracy: 0.7540 - loss: 0.4697 - val_acct
Epoch 2/2

782/782 —— 54s 69ms/step - accuracy: 0.9151 - loss: 0.2263 - val_acct

<keras.src.callbacks.history.History at 0x7f3efd663850> 31



Main Limitations of LSTM & Related Works

Limitations of LSTM:

= Lack of Coordination: Forget and write gates may lack
coordination, leading to unnecessarily large state sizes.

Extensions and Variants:
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Limitations of LSTM:

= Lack of Coordination: Forget and write gates may lack
coordination, leading to unnecessarily large state sizes.

= Unbounded State: Gates and candidate states can become
saturated, affecting the model’s performance.

Extensions and Variants:

= Normalized Prototype & GRU (Cho et al., 2014): Introduce
bounds to prevent saturation, simplifying the architecture.
= LSTM Variants:
= Basic LSTM: Standard implementation in frameworks like Keras,
TensorFlow, or PyTorch.
= [ STM hiccup: to limit states saturation in the basic LSTM.
» LSTM with Peepholes (Graves, 2013): Incorporates peephole

; ) - 32
connections to enhance the model’s memory capability.
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= The task of predicting the probability of a sequence of words.
= Serving as the foundation for various applications like text
generation, machine translation, and speech recognition.

Formal Definition:

= Given a sequence of words wy, wo, ..., w,, a LM computes the
probability P(wi, wa, ..., wp).

= With probability’s chain rule:
P(wi.n) = T171 P(wi|lwi, wa, ..., wi_1).

Importance of Language Modeling:

= Enables NLP systems in generating human-like language.
= Used to train BERT and GPT-like models. 33



Language Model as Next Token Prediction

Next Token Prediction:
= P(win) = 1121 P(wilwa, wo, ..., wi_1)
= Focus on Next Token Prediction,

P(wi|wi, wo, ..., w;_1): predict the

predict the
I saw a cat on a|mat| next token

0000

next word given previous ones.
With RNNs: I
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[cossl->[E000)

= Input: Sequence of tokens. "l saw a

5000
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0000
000
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(o]
” . npn d ol
cart on a"', the model receives "I", 9 1o

saw a cat on a comd.monomhe
" non_n o on " non_n previous tokens

saw”, "a", "cat”, "on", "a" as input
one after the other. Credit: Lena Voita

H [CoooH

= Output: At each step, the RNN
predicts the probability distribution of
the next token. Here "mat”
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lllustration of Language Model with RNNs

Next Token Prediction with top-5 proposition when training a

model:
o - ;
i glali|r (i
alr |dlala|l |h| elajm| |t|b|i |s]|am|f |
als|alali |k|i i lejell [e|d|h|, i |r|t
olujald|l |sful: [t |hlal- |o|e b |ul,
[yt jef-|n| |d|m|- [o]i [blu|v|s|] |b|b

Credit: Karpathy
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From Language Modeling to Word Embeddings with RNN

(1/2)

Language Modeling with RNN:

= RNNSs are a powerful tool for language modeling, capturing the
sequential nature and dependencies between words in text data.
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Language Modeling with RNN:

= RNNSs are a powerful tool for language modeling, capturing the
sequential nature and dependencies between words in text data.

= Traditionally, words were represented as one-hot vectors, where each
word is represented as a vector of the size of the vocabulary with all
zeros except for a single one at the index of the word.

Limitations of One-Hot Representations:

= Sparsity: One-hot vectors are sparse and do not capture any
semantic/contextual information.

= Dimensionality: The dimension of one-hot vectors grows with the
size of the vocabulary, leading to scalability issues.
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From Language Modeling to Word Embeddings with RNN

(2/2)

Transition to Dense Word Embeddings:

= RNNs, coupled with language modeling, can be used to learn dense
word vectors, also known as word embeddings.
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From Language Modeling to Word Embeddings with RNN

(2/2)

Transition to Dense Word Embeddings:

= RNNs, coupled with language modeling, can be used to learn dense
word vectors, also known as word embeddings.

= Richer Representations: Word embeddings capture more than just
the identity of words; they encode semantic meaning and context.

= Efficiency: Embeddings are lower-dimensional and dense,
addressing the issues of sparsity and high dimensionality in one-hot

representations.

Upcoming Session: We will delve deeper into the world of word
embeddings, exploring how they revolutionize the understanding and
representation of words in NLP models.
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Open Discussion
= Feel free to ask questions or share your thoughts about today’s
topics.
= Any insights, experiences, or perspectives you'd like to discuss are

welcome.
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Summary of Key Takeaways

= Neural Networks: Explored the fundamentals of Neural Networks,
including Vanilla Networks, Backpropagation, and Gradient Descent.

= Gradient issues: lllustrated the the issues of vanishing and
exploding gradients and gave some paths to avoid it.

= RNNSs: Discussed the significance of RNNs in handling sequential
data and their applications in tasks like language modeling and
machine translation.

= LSTM: Introduced the concept of gates (Write, Read, Forget) to
control the flow of information.

= Language Modeling: Introduced it with RNNs: how are used for
language modeling, emphasizing their ability to capture long-term
dependencies.
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