
Advanced Methods in Natural Language
Processing
Session 10: Hallucinations & Agent

Arnault Gombert
June 2025

Barcelona School of Economics

1

Introduction

Introduction: Hallucinations and Agents in LLMs

Today’s session will explore:

1. Main Limitations of LLMs

• Static Data / Outdated Knowledge: LLMs cannot update
themselves in real-time, leading to outdated or incomplete answers.

• Hallucinations: Confidently generating information that is false or
misleading.

Note: We will treat outdated knowledge as part of the hallucinations.

2. From Hallucinations to Agents

• How multi-step reasoning and tool use (agents) can reduce
hallucination risks.

• The ReAct framework: enabling LLMs to reason and act for more
robust and grounded outputs. 2

Understanding Hallucinations in
LLMs

Hallucinations in Large Language Models

Defining the Phenomenon:

Hallucinations in LLMs refer to instances where models generate
incorrect, fabricated, or nonsensical information that is not supported by
their input data or real-world facts.

Why It Matters:

• Impacts model reliability and trustworthiness.
• Challenges in deploying LLMs for critical applications.
• Raises concerns about misinformation dissemination.

Objective: To explore the underlying causes of hallucinations and
introduce strategies to mitigate these effects, enhancing the fidelity and
dependability of LLM outputs.

3

Examples of Hallucinations

1. Outdated Information: The model confidently states outdated facts
about a country’s current president or economic status, reflecting training
data that is not up-to-date.

2. Factual Inaccuracies: A model generates a detailed biography of a
fictional scientist, including their contributions to a non-existent field of
study.

3. Nonsensical Outputs: In response to a prompt about climate change, the
model conflates unrelated historical events, creating a confusing narrative.

4. Misinformation: The model asserts a false cause-and-effect relationship
between unrelated global health events, potentially spreading
misinformation.

Insight: These examples underscore the challenge of ensuring that LLMs
produce accurate and sensible outputs, particularly when dealing with complex
or nuanced topics.

4

Examples of Hallucinations

ChatGPT Screenshot from May 20th, 2025

5

Examples of Hallucinations

Wikipedia

ChatGPT summarizing a non-existent New York Times article based on a
fake URL.

6

Examples of Hallucinations

Wikipedia

A translation on the Vicuna LLM test bed of English into the constructed
language Lojban, and then back into English in a new round

7

Consequences of Hallucinations

Navigating the Impacts:

• Erosion of User Trust: Reliance on LLMs diminishes as output
reliability comes into question.

• Operational Risks: Inaccurate model outputs can lead to flawed
decision-making in critical applications, such as healthcare or legal
advice.

• Ethical and Societal Concerns: The spread of misinformation can
have widespread consequences, affecting public opinion, policy
making, and individual behavior.

Call to Action: Addressing hallucinations in LLMs is not just a technical
challenge but a necessary step towards responsible AI development and
deployment.

8

Why Do LLMs Hallucinate?

Extrinsic Hallucinations in Large Language Models

Data-Related Causes:

• Source-Reference Divergence: Heuristic data collection or
inherent nature of NLG tasks can promote ungrounded text
generation.

• Outdated or Incomplete Knowledge: LLMs are trained on static
data and cannot update themselves, leading to outdated or
incomplete responses.

• Examples:
• Asserting false cause-and-effect links in global health events.
• Stating outdated facts about political or economic developments.

Insight: Addressing these hallucinations requires grounding LLM outputs
with updated, external knowledge sources.

9

Intrinsic Hallucinations in Large Language Models

Model-Related Causes:

• Statistical Inevitability: Imperfect models that maximize training
likelihood can produce hallucinations, especially without active
learning corrections.

• Novelty vs. Usefulness Tradeoff: Focusing too much on novelty
can create original yet inaccurate responses, while prioritizing
usefulness might lead to repetitive outputs.

• Encoding and Decoding Errors: Incorrect correlations or attention
patterns in encoders and decoders can lead to hallucinations.
Example: Top-k sampling or high temperature can introduce more
hallucinated content.

• Examples:
• Generating detailed biographies for fictional scientists.
• Creating elaborate but untrue stories about climate change.

10

Mitigating Hallucinations

Introduction: Mitigating Hallucinations in LLMs

1. Prompt Engineering

• Crafting prompts that guide the LLM to generate grounded and
accurate answers.

• Using structured prompts, examples, and constraints to reduce
ambiguity.

2. Retrieval-Augmented Generation (RAG)

• Incorporating external, up-to-date knowledge sources to ground
responses.

• Fusing retrieval and generation to produce factually accurate
answers.

3. Multi-LLM Approaches: LLM as a Judge

• Using a second (or more !) LLM to validate or critique outputs,
enhancing quality control.

11

Why Multi-LLM Approach?

Enhanced Robustness and Reliability:

• Multi-agent systems can cross-verify information among different
models, reducing the likelihood of accepting hallucinated content as
accurate.

Diverse Perspectives and Specializations:

• Leveraging specialized agents for different domains or tasks can
provide a broader range of knowledge and viewpoints, mitigating the
risk of content fabrication.

Dynamic Feedback and Correction:

• Agents can provide real-time feedback and corrections to each
other’s outputs, ensuring more accurate and grounded responses.

12

LLM-as-a-Judge: Concept Overview

• Using a LLM to evaluate other LLM outputs.

• A scalable, consistent alternative to human
evaluations.

Key Insights:

• Zheng et al. (2023) shows LLM judges can align
with human judgments over 80% of the time.

• Effective for assessing helpfulness, coherence,
factual accuracy.

Applications:

• Evaluating chatbot responses.

• Comparing outputs from different LLMs.

• Improving model performance through automated
feedback.

Credit: fastchat/llm_judge

13

fastchat/llm_judge

LLM-as-a-Judge: Evaluating a Single Output

Scenario:

• Input Prompt: ”Explain the significance of the Higgs boson
discovery.”

• LLM Response: ”The Higgs boson discovery confirmed the existence
of the Higgs field, which gives mass to particles.”

Evaluation Prompt:

• ”Rate the accuracy and completeness of the following response on a
scale from 1 (poor) to 5 (excellent).”

LLM-as-a-Judge Assessment:

• Score: 4
• Justification: Accurate but lacks detail on experimental methods

and implications.
14

LLM-as-a-Judge: Evaluating a Single Output

Credit: Zheng et al. (2023)

15

LLM-as-a-Judge: Comparing Two Outputs

Scenario:

• Input Prompt: ”Summarize the causes of World War I.”
• Response A: ”World War I was caused by a complex set of alliances and

the assassination of Archduke Franz Ferdinand.”
• Response B: ”The war began due to imperialism, militarism, alliances, and

nationalism, triggered by the assassination of Archduke Franz Ferdinand.”

Evaluation Prompt:

• ”Which response provides a more comprehensive summary of the causes of
World War I?”

LLM-as-a-Judge Decision:

• Preferred Response: B
• Justification: Includes broader range of causes, offering a more complete

overview.
16

LLM-as-a-Judge: Comparing Two Outputs

Credit: Zheng et al. (2023)

17

Function Calling as a Guardrail

Function Calling in LLMs: A Key to Reducing Hallucinations

Motivation:

• LLMs are powerful text generators, but they may hallucinate or
produce outdated or fabricated information.

• Retrieval-Augmented Generation (RAG) mitigates this by
providing external data, but sometimes structured external
interactions are needed.

Function Calling:

• LLMs call functions or APIs to retrieve precise information or
perform specific tasks instead of guessing.

• This blends LLM’s natural language generation with factual,
real-time data—bridging the gap between static model knowledge
and dynamic external sources.

18

Function Calling: Overview

What is Function Calling?

• Instead of generating final answers from scratch, the LLM can call
an external function or API for reliable information.

• The LLM generates structured requests (e.g., JSON), which are sent
to external systems.

• Results from the function are then integrated into the LLM’s final
response.

Key Advantage:

• Reduces hallucinations by relying on external data sources for
factual accuracy.

19

When to Use Function Calling

Ideal Use Cases:

• Factual Retrieval: E.g., weather updates, stock prices, or current
events from APIs.

• Calculations and Conversions: LLM delegates complex math or
unit conversion tasks to reliable calculators.

• Database Queries: Querying structured databases (SQL, NoSQL)
for precise answers.

• Other External Tools: Any structured task requiring accurate
external data (e.g., flight status, product inventory, custom APIs).

Outcome: Enables LLMs to deliver factually accurate, real-time
responses grounded in reliable sources.

20

Example of Function Calling

Scenario:

• Prompt: “What’s the weather in Paris?”
• Goal: Provide real-time, accurate weather data.

Function Flow:

1. LLM Response: Generate a structured API call request to a
weather service.

2. External API: Weather service processes the request and returns
current data.

3. LLM Final Output: Incorporates the API response into a natural
language answer.

21

Implementation Example: get weather Function

Example Implementation

def get_weather(location: str, unit: str = "celsius") -> dict:
In real implementation, you’d use an API like OpenWeatherMap

mock_weather = {
"Paris": {"celsius": "18°C, sunny",

"fahrenheit": "64°F, sunny"},
"New York": {"celsius": "22°C, partly cloudy",

"fahrenheit": "72°F, partly cloudy"}
}

output = {"weather":
mock_weather.get(location, {}).get(unit, "Data not available")}

return output

Integration: This function would be called by your external system or
wrapper, and its output would be fed back to the LLM to generate a
user-friendly response. 22

Implementation Example: Function Calling with OpenAI API

Code Snippet

from openai import OpenAI

client = OpenAI()

functions = [
{

"name": "get_weather",
"description": "Retrieve current weather info for a city",
"parameters": {

"type": "object",
"properties": {

"location": {"type": "string", "description": "City name"},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}

},
"required": ["location"]

}
}

]
23

Implementation Example: Function Calling with OpenAI API

Code Snippet

response = client.chat.completions.create(
model="gpt-4o",
messages=[

{ "role": "system",
"content": "You can call APIs for accurate weather data."},

{"role": "user",
"content": "What’s the weather in Paris?"}

],
functions=functions,
function_call={"name": "get_weather"}

)

print(response.choices[0].message)

Output: A structured JSON request for the external weather API,
reducing guesswork and improving accuracy.

24

Agents

Introduction to Agents

From Function Calling to Agents:

• Function Calling Limitations: - When tasks involve multiple
functions, LLMs need to plan which functions to call and in what
order. - LLMs alone struggle to coordinate multiple external calls in
a structured way.

• Beyond Single-Turn QA: - Some queries require multi-step
reasoning, intermediate steps, or tool usage (e.g., calculator, search
API, database).

Agents:

• Extend LLMs to plan, decide, and execute actions in sequence.
• Enable dynamic interaction with external tools and data sources to

produce more reliable and grounded answers.
25

Why Do We Need Agents?

LLMs Alone:

• Typically stateless and limited to single-turn responses.
• Cannot track progress or adapt plans based on intermediate

outcomes.

Agents to the Rescue:

• Multi-Step Reasoning: Agents plan and adapt their steps to reach
a final answer.

• Tool Use: Dynamically select and use external tools (APIs,
calculators, knowledge bases).

• Memory Adaptation: Retain intermediate results to refine their
final response.

• Hallucination Mitigation: By verifying each step, agents reduce
error propagation. 26

Agents vs. Traditional LLMs

Traditional LLMs:

• Stateless: Each query is independent.
• Direct Output: No explicit planning or verification.
• Single-Pass Generation: Prone to hallucinations in complex tasks.

Agents:

• Iterative Reasoning: Plan actions based on intermediate results.
• Tool Integration: Use external APIs, retrieval systems, calculators,

etc.
• Environment Interaction: Can adapt to dynamic data and

evolving tasks.

Takeaway: Agents extend the capabilities of LLMs to tackle more
complex and realistic scenarios with better accuracy and reliability.

27

ReAct Framework Overview

What is ReAct?

• ReAct = Reason + Act
• It’s a framework where an LLM alternates between thinking and

acting to solve complex queries.

Key Features:

• Self-Ask: LLM formulates sub-questions to refine its reasoning.
• Use Tools: LLM interacts with external APIs, databases, or

calculators.
• Verification: Observes intermediate results and adapts its plan to

ensure accurate answers.

Why It Matters: ReAct empowers LLMs to tackle complex tasks in an
iterative, grounded, and structured manner.

28

Example of ReAct Flow

User Query: “What’s the capital of France’s highest mountain?”

ReAct Agent Process:

1. Step 1 – Think: Recognizes that it needs to know the highest
mountain in France first.

2. Step 2 – Act: Calls a knowledge API to find out: “What’s the
highest mountain in France?”

3. Step 3 – Observe: Receives: “Mont Blanc.”
4. Step 4 – Think: Now find out the capital of Mont Blanc’s region.
5. Step 5 – Act: Calls the API to find the capital of Haute-Savoie

(Mont Blanc’s department).
6. Step 6 – Compose Answer: The final answer: “The capital is

Annecy, Haute-Savoie.”

Outcome: An accurate and well-grounded answer through reasoning and
external tool use. 29

ReAct Framework: Key Steps

How ReAct Works:

1. Think (Reason) The LLM breaks down the task and identifies
sub-questions or steps.

2. Act (Use Tool) The LLM decides to call an external tool (API,
calculator, search engine) to get accurate data.

3. Observe (Get Result) Receives the result from the tool and
integrates it into its reasoning.

4. Repeat Until Robust Iteratively repeats reasoning and action until
a comprehensive and verified answer is reached.

Insight: ReAct turns the LLM from a static responder into a dynamic
agent that iteratively plans, executes, and verifies to minimize
hallucinations.

30

Implementation Example: ReAct Agent with LangChain

Python Example:

Code Snippet (LangChain)

from langchain.agents import initialize_agent, AgentType
from langchain.tools import Tool
from langchain.llms import OpenAI

Define your external tool (e.g., search engine)
tools = [

Tool(
name="search",
func=lambda q: f"Mock search result for: {q}",
description="Use to search the web or knowledge base."

)
]

31

Implementation Example: ReAct Agent with LangChain

Python Example:
Code Snippet (LangChain)

Initialize the ReAct agent
llm = OpenAI(model="gpt-4o")
agent = initialize_agent(

tools,
llm,
agent=AgentType.REACT,
verbose=True

)

Ask the agent a question
result = agent.run("What’s the capital of France’s highest mountain?")
print(result)

Outcome: The ReAct agent dynamically calls external tools to
iteratively build an accurate answer. 32

Limitations and Failure Modes of Agents

Agents Can Fail in Many Ways:

• Planning Failures:
• Invalid tools or incorrect parameters in tool calls.
• Plans that do not solve the intended task (goal failures).
• Errors in reflection (agent thinks it’s done but isn’t).

• Tool Failures:
• Correct tool is used but it produces the wrong output.
• Tool translation errors when generating executable commands.
• Missing or inadequate tools for certain domains.

• Efficiency Challenges:
• Agents may be slow, use too many steps, or be more expensive than

simpler approaches.

Key Insight: Effective evaluation and domain-specific tool selection are
essential for robust, efficient, and accurate agent-based solutions.

33

QA and Takeaways

QA

Open Discussion

• Feel free to ask questions or share your thoughts about today’s
topics.

• Any insights, experiences, or perspectives you’d like to discuss are
welcome.

34

Summary of Key Takeaways

• Hallucinations and Errors: LLMs can generate outdated or
incorrect information, highlighting the need for robust mitigation.

• Function Calling: A practical way to reduce hallucinations by
integrating real-world data sources (APIs, DBs).

• Agents: Go beyond single-turn QA with iterative planning, tool use,
and verification to tackle complex tasks.

• ReAct Framework: Combines reasoning and acting to create
adaptive, multi-step workflows.

• Limitations: Agents themselves can fail (planning, tool use,
efficiency), so evaluation and continuous improvement are critical.

• Outlook: Agent-based approaches open new frontiers for LLMs, but
they require careful design, testing, and domain adaptation.

35

	Introduction
	Understanding Hallucinations in LLMs
	Why Do LLMs Hallucinate?
	Mitigating Hallucinations
	Function Calling as a Guardrail
	Agents
	QA and Takeaways

