
Advanced Methods in Natural Language
Processing
Session 1: Introduction, Baselines, Evaluations & TF-IDF

Arnault Gombert
April 2025

Barcelona School of Economics

1

Today’s Class

Class Overview: Introduction

• Introduction to NLP
• Brief history and evolution
• Importance in current technology landscape
• Our class in a nutshell
• Use of LLM

• Evaluation Metrics in NLP
• Overview of key metrics
• Application and interpretation

• Baselines in NLP
• Understanding baseline models
• Importance and examples

• TF-IDF and Its Improvements
• Deep dive into TF-IDF
• Advanced techniques and applications

• QA and Wrap-Up
• Open discussion
• Summary of key takeaways 2

Introduction

Brief History and Evolution of NLP since 1950

• 1950s: Turing Test introduction; early machine translation
experiments.

• 1960s - 1970s: Emergence of rule-based systems, ELIZA;
focus on syntax and grammar.

• 1980s: Computational advancements; shift towards statistical
methods.

• 1990s: Rise of statistical models; RNNs: early machine/deep
learning approaches in NLP.

• 2000s: Growth in machine learning techniques; algorithms
like SVM, decision trees, Language Modeling.

• 2010s: Deep learning revolution; models like Word2Vec,
Transformer, BERT.

• 2020s: Widespread application; advances in contextual
understanding, sentiment analysis.

3

Natural Language Processing Today

• Search Engines (Google, Bing, Yahoo)

– Example: LexRank algorithm for page ranking (unsupervised
learning).

• Smartphone Keyboards

– Example: Predictive text and autocorrect (language modeling,
supervised learning).

• Translation Tools (Google Translate, DeepL)

– Example: Encoder/Decoder models for language translation
(supervised learning).

• Email Spam Detection

– Example: Classifying emails as spam or not (supervised
learning).

• Social Media (Facebook, Twitter)

– Example: Content recommendations based on user interests
(word embeddings, similarity algorithms).

4

Natural Language Processing Today

• Search Engines (Google, Bing, Yahoo)
– Example: LexRank algorithm for page ranking (unsupervised

learning).

• Smartphone Keyboards

– Example: Predictive text and autocorrect (language modeling,
supervised learning).

• Translation Tools (Google Translate, DeepL)

– Example: Encoder/Decoder models for language translation
(supervised learning).

• Email Spam Detection

– Example: Classifying emails as spam or not (supervised
learning).

• Social Media (Facebook, Twitter)

– Example: Content recommendations based on user interests
(word embeddings, similarity algorithms).

4

Natural Language Processing Today

• Search Engines (Google, Bing, Yahoo)
– Example: LexRank algorithm for page ranking (unsupervised

learning).

• Smartphone Keyboards

– Example: Predictive text and autocorrect (language modeling,
supervised learning).

• Translation Tools (Google Translate, DeepL)

– Example: Encoder/Decoder models for language translation
(supervised learning).

• Email Spam Detection

– Example: Classifying emails as spam or not (supervised
learning).

• Social Media (Facebook, Twitter)

– Example: Content recommendations based on user interests
(word embeddings, similarity algorithms).

4

Natural Language Processing Today

• Search Engines (Google, Bing, Yahoo)
– Example: LexRank algorithm for page ranking (unsupervised

learning).

• Smartphone Keyboards
– Example: Predictive text and autocorrect (language modeling,

supervised learning).

• Translation Tools (Google Translate, DeepL)

– Example: Encoder/Decoder models for language translation
(supervised learning).

• Email Spam Detection

– Example: Classifying emails as spam or not (supervised
learning).

• Social Media (Facebook, Twitter)

– Example: Content recommendations based on user interests
(word embeddings, similarity algorithms).

4

Natural Language Processing Today

• Search Engines (Google, Bing, Yahoo)
– Example: LexRank algorithm for page ranking (unsupervised

learning).

• Smartphone Keyboards
– Example: Predictive text and autocorrect (language modeling,

supervised learning).

• Translation Tools (Google Translate, DeepL)

– Example: Encoder/Decoder models for language translation
(supervised learning).

• Email Spam Detection

– Example: Classifying emails as spam or not (supervised
learning).

• Social Media (Facebook, Twitter)

– Example: Content recommendations based on user interests
(word embeddings, similarity algorithms).

4

Natural Language Processing Today

• Search Engines (Google, Bing, Yahoo)
– Example: LexRank algorithm for page ranking (unsupervised

learning).

• Smartphone Keyboards
– Example: Predictive text and autocorrect (language modeling,

supervised learning).

• Translation Tools (Google Translate, DeepL)
– Example: Encoder/Decoder models for language translation

(supervised learning).

• Email Spam Detection

– Example: Classifying emails as spam or not (supervised
learning).

• Social Media (Facebook, Twitter)

– Example: Content recommendations based on user interests
(word embeddings, similarity algorithms).

4

Natural Language Processing Today

• Search Engines (Google, Bing, Yahoo)
– Example: LexRank algorithm for page ranking (unsupervised

learning).

• Smartphone Keyboards
– Example: Predictive text and autocorrect (language modeling,

supervised learning).

• Translation Tools (Google Translate, DeepL)
– Example: Encoder/Decoder models for language translation

(supervised learning).

• Email Spam Detection

– Example: Classifying emails as spam or not (supervised
learning).

• Social Media (Facebook, Twitter)

– Example: Content recommendations based on user interests
(word embeddings, similarity algorithms).

4

Natural Language Processing Today

• Search Engines (Google, Bing, Yahoo)
– Example: LexRank algorithm for page ranking (unsupervised

learning).

• Smartphone Keyboards
– Example: Predictive text and autocorrect (language modeling,

supervised learning).

• Translation Tools (Google Translate, DeepL)
– Example: Encoder/Decoder models for language translation

(supervised learning).

• Email Spam Detection
– Example: Classifying emails as spam or not (supervised

learning).

• Social Media (Facebook, Twitter)

– Example: Content recommendations based on user interests
(word embeddings, similarity algorithms).

4

Natural Language Processing Today

• Search Engines (Google, Bing, Yahoo)
– Example: LexRank algorithm for page ranking (unsupervised

learning).

• Smartphone Keyboards
– Example: Predictive text and autocorrect (language modeling,

supervised learning).

• Translation Tools (Google Translate, DeepL)
– Example: Encoder/Decoder models for language translation

(supervised learning).

• Email Spam Detection
– Example: Classifying emails as spam or not (supervised

learning).

• Social Media (Facebook, Twitter)

– Example: Content recommendations based on user interests
(word embeddings, similarity algorithms).

4

Natural Language Processing Today

• Search Engines (Google, Bing, Yahoo)
– Example: LexRank algorithm for page ranking (unsupervised

learning).

• Smartphone Keyboards
– Example: Predictive text and autocorrect (language modeling,

supervised learning).

• Translation Tools (Google Translate, DeepL)
– Example: Encoder/Decoder models for language translation

(supervised learning).

• Email Spam Detection
– Example: Classifying emails as spam or not (supervised

learning).

• Social Media (Facebook, Twitter)
– Example: Content recommendations based on user interests

(word embeddings, similarity algorithms). 4

Our Program

Part I - Good old fashioned NLP

1. Session 1 : Baselines and Sparse representations - Baseline
Models, Evaluations, TF-IDF and improvements

2. Session 2 : Deep Learning - Backpropagation in Neural
Networks, LSTM, Attention Processes, Language Models

3. Session 3 : Word Embeddings - Static (Word2Vec, GloVe,
FastText) and Contextual Embeddings (ELMo, BERT)

4. Session 4 : Practical Session + Homework - Baseline
Pipeline, Metrics Evaluation, LSTM-Pipeline, Training Own
Embeddings

5

Part II - Almost Part of Good Old Fashioned NLP

5. Session 5 : Transformer Architecture, Self-Attention, BERT
Architecture

6. Session 6 : Few Shot Learning, Transfer Learning -
Fine-Tuning BERT, Leveraging Existing Knowledge, Prompts
in Learning

7. Session 7 : Injustice Biases in NLP - Detecting and Mitigating
Biases, Large Language Models

8. Session 8 : Practical Session + Homework - Fine-Tuning
BERT, Data Requirements, Low Resource Solutions,
Detecting Biases

6

Part III - LLMs, ChatGPT Others

9. Session 9 : Prompt Engineering Fine-Tuning - Zero Shot
Learning, Chain of Thoughts, Formatting Outputs

10. Session 10 : Hallucinations Other Limitations - Detecting
Hallucinations, Understanding Limitations

7

Where to Find Course Materials

Course Website

• All course materials can be found on our dedicated website:
• Notebooks for hands-on practice
• Resources (articles, videos, external links)
• Slides (PDFs) for each session
• Home Assignments and the Final Project guidelines

• Please check it regularly for updates and announcements.
• https://agombert.github.io/AdvancedNLPClasses/

• For any correction proposition you can raise an issue here:
https://github.com/agombert/AdvancedNLPClasses

8

https://agombert.github.io/AdvancedNLPClasses/
https://github.com/agombert/AdvancedNLPClasses

Class Evaluation Criteria

• Participation - 10%
• Active engagement in class discussions.
• Attendance and involvement in interactive sessions.

• Homework - 20%
• 2 homework assignments.
• Application of class concepts and timely submission.

• Team Project (3-4 Students) - 70%
• Collaborative team project.
• Application of NLP concepts and techniques learned in class.
• Final paper submission + presentation.

9

Leveraging LLMs and Higher-Level
Thinking

Leveraging Large Language Models (LLMs)

• LLMs as Tools for Coding and Ideation
• GitHub Copilot, ChatGPT, Claude, Cursor, etc.
• Rapid prototyping, code suggestions, and brainstorming.

• Advantages
• Speed up routine tasks and boilerplate code generation.
• Provide alternative solutions or potential optimizations.

• Caveats
• Over-reliance may reduce deep understanding of core concepts.
• Generated solutions can be incorrect or incomplete without

proper validation.

10

The Reverse of the Medal: Emphasis on Model Interpretation

• Coding vs. Interpretation
• We will not focus heavily on raw coding skills.
• Crucial aspect: ability to interpret model outputs, understand

features, and assess limitations.
• Evaluation Criteria

• Clarity of explanation: Why does a model behave as it does?
• Identifying Limitations and Improvements: Propose

meaningful enhancements and spot potential pitfalls.
• No “ChatGPT-ish” Answers: Vague or auto-generated

responses without solid reasoning will receive minimal or no
points.

• Outcome
• By the end of the class, your capacity to critically analyze and

defend your approach will be a key part of the grade.

11

The Evolving Role of Data Scientists and ML Engineers

• Core Competency: Problem Understanding
• Translate complex, abstract ideas into actionable models.
• Demonstrate why a particular approach works (or does not).

• Not Just Implementation
• Modern tools reduce coding hurdles.
• True value lies in framing the problem, explaining results, and

innovating.
• Intellectual Rigor and Clarity

• Employers and peers increasingly judge on conceptual depth
and clarity of thought.

• This course emphasizes a balance between technical skills and
critical understanding.

12

Today’s class

Evaluation of models

Key Tasks in NLP and Related Metrics - I

1. Text Classification

• Tasks: Sentimental Analysis, Spam Detection, Topic
Assignment, Document Categorization.

• Metrics: Accuracy, Precision, Recall, F1-Score.

2. Named Entity Recognition (NER)

• Tasks: Identifying names, organizations, locations in text.
• Metrics: Precision, Recall, F1-Score, Entity-Level Accuracy.

3. Topic Modeling

• Tasks: Discovering topics in large text corpora.
• Metrics: Coherence Score, Perplexity, Human Evaluation.

13

Key Tasks in NLP and Related Metrics - I

1. Text Classification

• Tasks: Sentimental Analysis, Spam Detection, Topic
Assignment, Document Categorization.

• Metrics: Accuracy, Precision, Recall, F1-Score.

2. Named Entity Recognition (NER)

• Tasks: Identifying names, organizations, locations in text.
• Metrics: Precision, Recall, F1-Score, Entity-Level Accuracy.

3. Topic Modeling

• Tasks: Discovering topics in large text corpora.
• Metrics: Coherence Score, Perplexity, Human Evaluation.

13

Key Tasks in NLP and Related Metrics - I

1. Text Classification

• Tasks: Sentimental Analysis, Spam Detection, Topic
Assignment, Document Categorization.

• Metrics: Accuracy, Precision, Recall, F1-Score.

2. Named Entity Recognition (NER)

• Tasks: Identifying names, organizations, locations in text.

• Metrics: Precision, Recall, F1-Score, Entity-Level Accuracy.

3. Topic Modeling

• Tasks: Discovering topics in large text corpora.
• Metrics: Coherence Score, Perplexity, Human Evaluation.

13

Key Tasks in NLP and Related Metrics - I

1. Text Classification

• Tasks: Sentimental Analysis, Spam Detection, Topic
Assignment, Document Categorization.

• Metrics: Accuracy, Precision, Recall, F1-Score.

2. Named Entity Recognition (NER)

• Tasks: Identifying names, organizations, locations in text.
• Metrics: Precision, Recall, F1-Score, Entity-Level Accuracy.

3. Topic Modeling

• Tasks: Discovering topics in large text corpora.
• Metrics: Coherence Score, Perplexity, Human Evaluation.

13

Key Tasks in NLP and Related Metrics - I

1. Text Classification

• Tasks: Sentimental Analysis, Spam Detection, Topic
Assignment, Document Categorization.

• Metrics: Accuracy, Precision, Recall, F1-Score.

2. Named Entity Recognition (NER)

• Tasks: Identifying names, organizations, locations in text.
• Metrics: Precision, Recall, F1-Score, Entity-Level Accuracy.

3. Topic Modeling

• Tasks: Discovering topics in large text corpora.

• Metrics: Coherence Score, Perplexity, Human Evaluation.

13

Key Tasks in NLP and Related Metrics - I

1. Text Classification

• Tasks: Sentimental Analysis, Spam Detection, Topic
Assignment, Document Categorization.

• Metrics: Accuracy, Precision, Recall, F1-Score.

2. Named Entity Recognition (NER)

• Tasks: Identifying names, organizations, locations in text.
• Metrics: Precision, Recall, F1-Score, Entity-Level Accuracy.

3. Topic Modeling

• Tasks: Discovering topics in large text corpora.
• Metrics: Coherence Score, Perplexity, Human Evaluation.

13

Key Tasks in NLP and Related Metrics - II

4. Machine Translation

• Tasks: Translating text from one language to another.

• Metrics: BLEU, METEOR, TER.

5. Text Generation

• Tasks: Automated content creation, dialogue generation.
• Metrics: BLEU, ROUGE, Perplexity, Human Evaluation.

6. Question Answering

• Tasks: Building systems that automatically answer questions.
• Metrics: F1-Score, Exact Match, BLEU.

14

Key Tasks in NLP and Related Metrics - II

4. Machine Translation

• Tasks: Translating text from one language to another.
• Metrics: BLEU, METEOR, TER.

5. Text Generation

• Tasks: Automated content creation, dialogue generation.
• Metrics: BLEU, ROUGE, Perplexity, Human Evaluation.

6. Question Answering

• Tasks: Building systems that automatically answer questions.
• Metrics: F1-Score, Exact Match, BLEU.

14

Key Tasks in NLP and Related Metrics - II

4. Machine Translation

• Tasks: Translating text from one language to another.
• Metrics: BLEU, METEOR, TER.

5. Text Generation

• Tasks: Automated content creation, dialogue generation.

• Metrics: BLEU, ROUGE, Perplexity, Human Evaluation.

6. Question Answering

• Tasks: Building systems that automatically answer questions.
• Metrics: F1-Score, Exact Match, BLEU.

14

Key Tasks in NLP and Related Metrics - II

4. Machine Translation

• Tasks: Translating text from one language to another.
• Metrics: BLEU, METEOR, TER.

5. Text Generation

• Tasks: Automated content creation, dialogue generation.
• Metrics: BLEU, ROUGE, Perplexity, Human Evaluation.

6. Question Answering

• Tasks: Building systems that automatically answer questions.
• Metrics: F1-Score, Exact Match, BLEU.

14

Key Tasks in NLP and Related Metrics - II

4. Machine Translation

• Tasks: Translating text from one language to another.
• Metrics: BLEU, METEOR, TER.

5. Text Generation

• Tasks: Automated content creation, dialogue generation.
• Metrics: BLEU, ROUGE, Perplexity, Human Evaluation.

6. Question Answering

• Tasks: Building systems that automatically answer questions.

• Metrics: F1-Score, Exact Match, BLEU.

14

Key Tasks in NLP and Related Metrics - II

4. Machine Translation

• Tasks: Translating text from one language to another.
• Metrics: BLEU, METEOR, TER.

5. Text Generation

• Tasks: Automated content creation, dialogue generation.
• Metrics: BLEU, ROUGE, Perplexity, Human Evaluation.

6. Question Answering

• Tasks: Building systems that automatically answer questions.
• Metrics: F1-Score, Exact Match, BLEU.

14

A Closer Look at Key NLP Metrics

Note: Metrics are essential in NLP to assess problem difficulty and
solution quality. They quantify success and guide improvements.

• Text Classification Metrics

• Recall : Identifies relevant instances.
• Precision: Accuracy of identifying relevant instances.
• F1-Score: Balance of Precision and Recall.

• General NLP Metrics

• Model Loss: Model’s prediction accuracy.
• NPMI: Association strength in topic modeling.
• ROUGE : Summarization and translation evaluation.

• Benchmarks

• GLUE : Variety of language tasks (Wang et al., 2019).
• X-TREME : Cross-lingual tasks (Hu et al., 2020).

15

A Closer Look at Key NLP Metrics

Note: Metrics are essential in NLP to assess problem difficulty and
solution quality. They quantify success and guide improvements.

• Text Classification Metrics
• Recall : Identifies relevant instances.

• Precision: Accuracy of identifying relevant instances.
• F1-Score: Balance of Precision and Recall.

• General NLP Metrics

• Model Loss: Model’s prediction accuracy.
• NPMI: Association strength in topic modeling.
• ROUGE : Summarization and translation evaluation.

• Benchmarks

• GLUE : Variety of language tasks (Wang et al., 2019).
• X-TREME : Cross-lingual tasks (Hu et al., 2020).

15

A Closer Look at Key NLP Metrics

Note: Metrics are essential in NLP to assess problem difficulty and
solution quality. They quantify success and guide improvements.

• Text Classification Metrics
• Recall : Identifies relevant instances.
• Precision: Accuracy of identifying relevant instances.

• F1-Score: Balance of Precision and Recall.
• General NLP Metrics

• Model Loss: Model’s prediction accuracy.
• NPMI: Association strength in topic modeling.
• ROUGE : Summarization and translation evaluation.

• Benchmarks

• GLUE : Variety of language tasks (Wang et al., 2019).
• X-TREME : Cross-lingual tasks (Hu et al., 2020).

15

A Closer Look at Key NLP Metrics

Note: Metrics are essential in NLP to assess problem difficulty and
solution quality. They quantify success and guide improvements.

• Text Classification Metrics
• Recall : Identifies relevant instances.
• Precision: Accuracy of identifying relevant instances.
• F1-Score: Balance of Precision and Recall.

• General NLP Metrics

• Model Loss: Model’s prediction accuracy.
• NPMI: Association strength in topic modeling.
• ROUGE : Summarization and translation evaluation.

• Benchmarks

• GLUE : Variety of language tasks (Wang et al., 2019).
• X-TREME : Cross-lingual tasks (Hu et al., 2020).

15

A Closer Look at Key NLP Metrics

Note: Metrics are essential in NLP to assess problem difficulty and
solution quality. They quantify success and guide improvements.

• Text Classification Metrics
• Recall : Identifies relevant instances.
• Precision: Accuracy of identifying relevant instances.
• F1-Score: Balance of Precision and Recall.

• General NLP Metrics

• Model Loss: Model’s prediction accuracy.
• NPMI: Association strength in topic modeling.
• ROUGE : Summarization and translation evaluation.

• Benchmarks

• GLUE : Variety of language tasks (Wang et al., 2019).
• X-TREME : Cross-lingual tasks (Hu et al., 2020).

15

A Closer Look at Key NLP Metrics

Note: Metrics are essential in NLP to assess problem difficulty and
solution quality. They quantify success and guide improvements.

• Text Classification Metrics
• Recall : Identifies relevant instances.
• Precision: Accuracy of identifying relevant instances.
• F1-Score: Balance of Precision and Recall.

• General NLP Metrics
• Model Loss: Model’s prediction accuracy.

• NPMI: Association strength in topic modeling.
• ROUGE : Summarization and translation evaluation.

• Benchmarks

• GLUE : Variety of language tasks (Wang et al., 2019).
• X-TREME : Cross-lingual tasks (Hu et al., 2020).

15

A Closer Look at Key NLP Metrics

Note: Metrics are essential in NLP to assess problem difficulty and
solution quality. They quantify success and guide improvements.

• Text Classification Metrics
• Recall : Identifies relevant instances.
• Precision: Accuracy of identifying relevant instances.
• F1-Score: Balance of Precision and Recall.

• General NLP Metrics
• Model Loss: Model’s prediction accuracy.
• NPMI: Association strength in topic modeling.

• ROUGE : Summarization and translation evaluation.
• Benchmarks

• GLUE : Variety of language tasks (Wang et al., 2019).
• X-TREME : Cross-lingual tasks (Hu et al., 2020).

15

A Closer Look at Key NLP Metrics

Note: Metrics are essential in NLP to assess problem difficulty and
solution quality. They quantify success and guide improvements.

• Text Classification Metrics
• Recall : Identifies relevant instances.
• Precision: Accuracy of identifying relevant instances.
• F1-Score: Balance of Precision and Recall.

• General NLP Metrics
• Model Loss: Model’s prediction accuracy.
• NPMI: Association strength in topic modeling.
• ROUGE : Summarization and translation evaluation.

• Benchmarks

• GLUE : Variety of language tasks (Wang et al., 2019).
• X-TREME : Cross-lingual tasks (Hu et al., 2020).

15

A Closer Look at Key NLP Metrics

Note: Metrics are essential in NLP to assess problem difficulty and
solution quality. They quantify success and guide improvements.

• Text Classification Metrics
• Recall : Identifies relevant instances.
• Precision: Accuracy of identifying relevant instances.
• F1-Score: Balance of Precision and Recall.

• General NLP Metrics
• Model Loss: Model’s prediction accuracy.
• NPMI: Association strength in topic modeling.
• ROUGE : Summarization and translation evaluation.

• Benchmarks

• GLUE : Variety of language tasks (Wang et al., 2019).
• X-TREME : Cross-lingual tasks (Hu et al., 2020).

15

A Closer Look at Key NLP Metrics

Note: Metrics are essential in NLP to assess problem difficulty and
solution quality. They quantify success and guide improvements.

• Text Classification Metrics
• Recall : Identifies relevant instances.
• Precision: Accuracy of identifying relevant instances.
• F1-Score: Balance of Precision and Recall.

• General NLP Metrics
• Model Loss: Model’s prediction accuracy.
• NPMI: Association strength in topic modeling.
• ROUGE : Summarization and translation evaluation.

• Benchmarks
• GLUE : Variety of language tasks (Wang et al., 2019).

• X-TREME : Cross-lingual tasks (Hu et al., 2020).

15

A Closer Look at Key NLP Metrics

Note: Metrics are essential in NLP to assess problem difficulty and
solution quality. They quantify success and guide improvements.

• Text Classification Metrics
• Recall : Identifies relevant instances.
• Precision: Accuracy of identifying relevant instances.
• F1-Score: Balance of Precision and Recall.

• General NLP Metrics
• Model Loss: Model’s prediction accuracy.
• NPMI: Association strength in topic modeling.
• ROUGE : Summarization and translation evaluation.

• Benchmarks
• GLUE : Variety of language tasks (Wang et al., 2019).
• X-TREME : Cross-lingual tasks (Hu et al., 2020).

15

Understanding Metrics Through Applications

1. High Accuracy, Low Recall, and Precision

• Scenario: A spam filter mostly marks all emails as non-spam.
• Question: Can we be sure the model is good despite high

accuracy?

Answer:

• High accuracy with low recall and precision can be misleading,
especially in imbalanced datasets. It might not be a good
model.

16

Understanding Metrics Through Applications

1. High Accuracy, Low Recall, and Precision

• Scenario: A spam filter mostly marks all emails as non-spam.
• Question: Can we be sure the model is good despite high

accuracy?

Answer:

• High accuracy with low recall and precision can be misleading,
especially in imbalanced datasets. It might not be a good
model.

16

Missile Detection Algorithm

Scenario:

• W hat is the best metric to use for a missile detection
algorithm?

• Consider : The implications of high recall vs. high precision.

Answer:

• High Recall/Low Precision: Avoids missing detections, but
may cause false alarms.

• Low Recall/High Precision: Reduces false alarms, but might
miss actual threats.

17

Missile Detection Algorithm

Scenario:

• W hat is the best metric to use for a missile detection
algorithm?

• Consider : The implications of high recall vs. high precision.

Answer:

• High Recall/Low Precision: Avoids missing detections, but
may cause false alarms.

• Low Recall/High Precision: Reduces false alarms, but might
miss actual threats.

17

Trial Algorithm in a Judicial System

Scenario:

• is the best metric to use for a trial algorithm in a judicial
system?

• Consider : The implications of high recall vs. high precision.

Answer:

• High Recall / Low Precision: Prioritizes ensuring no guilty
party is missed, but risks more false positives (wrongful
accusations).

• Low Recall / High Precision: Focuses on minimizing wrongful
accusations but might miss identifying some guilty parties.

18

Trial Algorithm in a Judicial System

Scenario:

• is the best metric to use for a trial algorithm in a judicial
system?

• Consider : The implications of high recall vs. high precision.

Answer:

• High Recall / Low Precision: Prioritizes ensuring no guilty
party is missed, but risks more false positives (wrongful
accusations).

• Low Recall / High Precision: Focuses on minimizing wrongful
accusations but might miss identifying some guilty parties.

18

Computational Metrics

1. Computational Efficiency

• Number of Texts Processed per Second : Measures the
model’s speed, crucial for real-time applications.

• RAM Used : Indicates the model’s memory efficiency,
important for deployment in limited-resource environments.

19

Sustainability Considerations in NLP

2. Environmental Impact

• CO2 Equivalents (Strubell et al., 2019): Assesses the
environmental footprint of training and running NLP models.

• Software Carbon Intensity (Dodge et al., 2022): Measures the
carbon efficiency of software, highlighting the need for greener
algorithms.

20

Bias Assessment in NLP Models

3. Fairness and Bias

• False Positive/Negative Rates by Demographic Segment:
Evaluates the model’s fairness across different groups.

• Qualitative Study of Outputs with Prompts (Sheng et al.,
2019): Investigates subtle biases in model responses.

21

Baselines: The Best Tool to Explore
from Intuition

Best Practices for ML Engineering

Based on Google’s Best Practices for ML Engineering, Zinkevich et
al. (2022)

• Rule #1: Launch Products without ML Fearlessly
• Emphasizes starting simple. Advanced ML is not always the

initial answer.
• Rule #2: Prioritize Metrics Design and Implementation

• Stresses the importance of defining success metrics before ML
integration.

• Rule #3: Prefer ML to Complex Heuristics
• Recommends using ML for problems too complex for heuristic

approaches.

22

Scenario: A Simple Decision Rule

• Context: Implementing a system to categorize emails as
’urgent’ or ’non-urgent’ based on a specific keyword.

• Traditional Approach: Using a simple keyword search
algorithm to flag emails containing words like ’urgent’ or
’immediate’.

• Machine Learning Approach: Training a complex NLP
model to understand the context and categorize emails.

• Analysis:

• Complexity : ML adds unnecessary complexity for a task
solvable with basic programming.

• Resource Efficiency : ML requires more data, computational
power, and maintenance.

• Practicality : A simple keyword-based approach is more
straightforward, easier to implement, and maintain.

• Conclusion: In this case, a basic keyword search is more
effective than applying an ML solution.

23

Scenario: A Simple Decision Rule

• Context: Implementing a system to categorize emails as
’urgent’ or ’non-urgent’ based on a specific keyword.

• Traditional Approach: Using a simple keyword search
algorithm to flag emails containing words like ’urgent’ or
’immediate’.

• Machine Learning Approach: Training a complex NLP
model to understand the context and categorize emails.

• Analysis:

• Complexity : ML adds unnecessary complexity for a task
solvable with basic programming.

• Resource Efficiency : ML requires more data, computational
power, and maintenance.

• Practicality : A simple keyword-based approach is more
straightforward, easier to implement, and maintain.

• Conclusion: In this case, a basic keyword search is more
effective than applying an ML solution.

23

Scenario: A Simple Decision Rule

• Context: Implementing a system to categorize emails as
’urgent’ or ’non-urgent’ based on a specific keyword.

• Traditional Approach: Using a simple keyword search
algorithm to flag emails containing words like ’urgent’ or
’immediate’.

• Machine Learning Approach: Training a complex NLP
model to understand the context and categorize emails.

• Analysis:

• Complexity : ML adds unnecessary complexity for a task
solvable with basic programming.

• Resource Efficiency : ML requires more data, computational
power, and maintenance.

• Practicality : A simple keyword-based approach is more
straightforward, easier to implement, and maintain.

• Conclusion: In this case, a basic keyword search is more
effective than applying an ML solution.

23

Scenario: A Simple Decision Rule

• Context: Implementing a system to categorize emails as
’urgent’ or ’non-urgent’ based on a specific keyword.

• Traditional Approach: Using a simple keyword search
algorithm to flag emails containing words like ’urgent’ or
’immediate’.

• Machine Learning Approach: Training a complex NLP
model to understand the context and categorize emails.

• Analysis:

• Complexity : ML adds unnecessary complexity for a task
solvable with basic programming.

• Resource Efficiency : ML requires more data, computational
power, and maintenance.

• Practicality : A simple keyword-based approach is more
straightforward, easier to implement, and maintain.

• Conclusion: In this case, a basic keyword search is more
effective than applying an ML solution.

23

Scenario: A Simple Decision Rule

• Context: Implementing a system to categorize emails as
’urgent’ or ’non-urgent’ based on a specific keyword.

• Traditional Approach: Using a simple keyword search
algorithm to flag emails containing words like ’urgent’ or
’immediate’.

• Machine Learning Approach: Training a complex NLP
model to understand the context and categorize emails.

• Analysis:
• Complexity : ML adds unnecessary complexity for a task

solvable with basic programming.

• Resource Efficiency : ML requires more data, computational
power, and maintenance.

• Practicality : A simple keyword-based approach is more
straightforward, easier to implement, and maintain.

• Conclusion: In this case, a basic keyword search is more
effective than applying an ML solution.

23

Scenario: A Simple Decision Rule

• Context: Implementing a system to categorize emails as
’urgent’ or ’non-urgent’ based on a specific keyword.

• Traditional Approach: Using a simple keyword search
algorithm to flag emails containing words like ’urgent’ or
’immediate’.

• Machine Learning Approach: Training a complex NLP
model to understand the context and categorize emails.

• Analysis:
• Complexity : ML adds unnecessary complexity for a task

solvable with basic programming.
• Resource Efficiency : ML requires more data, computational

power, and maintenance.

• Practicality : A simple keyword-based approach is more
straightforward, easier to implement, and maintain.

• Conclusion: In this case, a basic keyword search is more
effective than applying an ML solution.

23

Scenario: A Simple Decision Rule

• Context: Implementing a system to categorize emails as
’urgent’ or ’non-urgent’ based on a specific keyword.

• Traditional Approach: Using a simple keyword search
algorithm to flag emails containing words like ’urgent’ or
’immediate’.

• Machine Learning Approach: Training a complex NLP
model to understand the context and categorize emails.

• Analysis:
• Complexity : ML adds unnecessary complexity for a task

solvable with basic programming.
• Resource Efficiency : ML requires more data, computational

power, and maintenance.
• Practicality : A simple keyword-based approach is more

straightforward, easier to implement, and maintain.

• Conclusion: In this case, a basic keyword search is more
effective than applying an ML solution.

23

Scenario: A Simple Decision Rule

• Context: Implementing a system to categorize emails as
’urgent’ or ’non-urgent’ based on a specific keyword.

• Traditional Approach: Using a simple keyword search
algorithm to flag emails containing words like ’urgent’ or
’immediate’.

• Machine Learning Approach: Training a complex NLP
model to understand the context and categorize emails.

• Analysis:
• Complexity : ML adds unnecessary complexity for a task

solvable with basic programming.
• Resource Efficiency : ML requires more data, computational

power, and maintenance.
• Practicality : A simple keyword-based approach is more

straightforward, easier to implement, and maintain.
• Conclusion: In this case, a basic keyword search is more

effective than applying an ML solution. 23

Regex Utilization: Detecting Urgent Emails

Python Implementation for Simple Pattern Matching

import re
def is_urgent(email_content, words):

words = ’|’.join(words)
pattern = r’\\b(?:{})\\b’.format(words)
if re.search(pattern, email_content, re.IGNORECASE):

return "Urgent Email"
return "Non-Urgent Email"

email = "Please review this document ASAP."
words = [’urgent’, ’asap’, ’immediate’]
print(is_urgent(email))

Outcome: Efficiently identifies emails with urgent keywords.
24

Speed Comparison: Regex vs. Scikit-Learn

Inference Time Comparison

• Task: Classify emails as ’urgent’ or ’non-urgent’.
• Methods:

• Regex-based pattern matching.
• A typical NLP classifier from scikit-learn. Needs data to train.

• Performance Metrics:
• Time Taken for Inference:

• Regex: Generally ∼s for 10k mails.
• Scikit-Learn: Between 10-100s for 10k mails, may be larger.

• Efficiency : Regex is often faster for simple pattern matching
tasks.

Conclusion: For simple keyword-based tasks, Regex can be
significantly faster and more resource-efficient than a full ML
model. You can iterate fast to reach decent results.

25

spaCy Rule-Based Matching with POS Tagging

Note: Let’s say we consider urgent only if action is needed. Action
generally means a verb is present after one keyword.

Part 1: define matcher object

import spacy
from spacy.matcher import Matcher

Load spaCy model
nlp = spacy.load("en_core_web_sm")

Initialize Matcher
matcher = Matcher(nlp.vocab)

Part 2: Define the pattern

pattern = [{’TEXT’:
{’REGEX’:’(?:urgent|asap)’}},

{’POS’:’PUNCT’,
’OP’: ’?’},

{’POS’:’VERB’}]
matcher.add("URGENT_ACTION_PATTERN",

[pattern])

26

spaCy Rule-Based Matching with POS Tagging

Process text
doc = nlp("It is urgent: please review.")
Apply matcher to doc
matches = matcher(doc)

for match_id, start, end in matches:
matched_span = doc[start:end]
print(matched_span.text)

Note: And we could add much more rules.

27

Enhancing Rule-Based Matching with POS Tagging

Applications and Advantages

• Precision: Enhances pattern matching by considering word
types and roles in sentences for more accurate entity and
phrase recognition.

• Versatility: Enables the definition of complex patterns,
facilitating a wider range of linguistic analyses.

• Depth: Offers deeper insights and more nuanced text analysis
through contextual understanding.

Conclusion

• Rule-based matching with spaCy significantly improves the
precision and depth of text analysis.

28

Compare SOA, Baseline & Random

Put perspective in results ! For instance a classification with 3
classes.

29

Limitations of Rule-Based Systems in NLP

• Static Rules

• Require updates
• bootstrapping methods (Gupta et al., 2014) can help evolve

rules.
• Multilingual Scalability

• Challenging for multiple languages
• combining with translation tools and embedding alignment

(Dou et al., 2016) can improve effectiveness.

• Too many rules

• Specialized rules may quickly become outdated
• continuous updates and monitoring are expensive.

Once we have a strong baseline: We may think about Machine
Learning !

30

Limitations of Rule-Based Systems in NLP

• Static Rules
• Require updates

• bootstrapping methods (Gupta et al., 2014) can help evolve
rules.

• Multilingual Scalability

• Challenging for multiple languages
• combining with translation tools and embedding alignment

(Dou et al., 2016) can improve effectiveness.

• Too many rules

• Specialized rules may quickly become outdated
• continuous updates and monitoring are expensive.

Once we have a strong baseline: We may think about Machine
Learning !

30

Limitations of Rule-Based Systems in NLP

• Static Rules
• Require updates
• bootstrapping methods (Gupta et al., 2014) can help evolve

rules.

• Multilingual Scalability

• Challenging for multiple languages
• combining with translation tools and embedding alignment

(Dou et al., 2016) can improve effectiveness.

• Too many rules

• Specialized rules may quickly become outdated
• continuous updates and monitoring are expensive.

Once we have a strong baseline: We may think about Machine
Learning !

30

Limitations of Rule-Based Systems in NLP

• Static Rules
• Require updates
• bootstrapping methods (Gupta et al., 2014) can help evolve

rules.
• Multilingual Scalability

• Challenging for multiple languages
• combining with translation tools and embedding alignment

(Dou et al., 2016) can improve effectiveness.
• Too many rules

• Specialized rules may quickly become outdated
• continuous updates and monitoring are expensive.

Once we have a strong baseline: We may think about Machine
Learning !

30

Limitations of Rule-Based Systems in NLP

• Static Rules
• Require updates
• bootstrapping methods (Gupta et al., 2014) can help evolve

rules.
• Multilingual Scalability

• Challenging for multiple languages

• combining with translation tools and embedding alignment
(Dou et al., 2016) can improve effectiveness.

• Too many rules

• Specialized rules may quickly become outdated
• continuous updates and monitoring are expensive.

Once we have a strong baseline: We may think about Machine
Learning !

30

Limitations of Rule-Based Systems in NLP

• Static Rules
• Require updates
• bootstrapping methods (Gupta et al., 2014) can help evolve

rules.
• Multilingual Scalability

• Challenging for multiple languages
• combining with translation tools and embedding alignment

(Dou et al., 2016) can improve effectiveness.

• Too many rules

• Specialized rules may quickly become outdated
• continuous updates and monitoring are expensive.

Once we have a strong baseline: We may think about Machine
Learning !

30

Limitations of Rule-Based Systems in NLP

• Static Rules
• Require updates
• bootstrapping methods (Gupta et al., 2014) can help evolve

rules.
• Multilingual Scalability

• Challenging for multiple languages
• combining with translation tools and embedding alignment

(Dou et al., 2016) can improve effectiveness.
• Too many rules

• Specialized rules may quickly become outdated
• continuous updates and monitoring are expensive.

Once we have a strong baseline: We may think about Machine
Learning !

30

Limitations of Rule-Based Systems in NLP

• Static Rules
• Require updates
• bootstrapping methods (Gupta et al., 2014) can help evolve

rules.
• Multilingual Scalability

• Challenging for multiple languages
• combining with translation tools and embedding alignment

(Dou et al., 2016) can improve effectiveness.
• Too many rules

• Specialized rules may quickly become outdated

• continuous updates and monitoring are expensive.

Once we have a strong baseline: We may think about Machine
Learning !

30

Limitations of Rule-Based Systems in NLP

• Static Rules
• Require updates
• bootstrapping methods (Gupta et al., 2014) can help evolve

rules.
• Multilingual Scalability

• Challenging for multiple languages
• combining with translation tools and embedding alignment

(Dou et al., 2016) can improve effectiveness.
• Too many rules

• Specialized rules may quickly become outdated
• continuous updates and monitoring are expensive.

Once we have a strong baseline: We may think about Machine
Learning !

30

Limitations of Rule-Based Systems in NLP

• Static Rules
• Require updates
• bootstrapping methods (Gupta et al., 2014) can help evolve

rules.
• Multilingual Scalability

• Challenging for multiple languages
• combining with translation tools and embedding alignment

(Dou et al., 2016) can improve effectiveness.
• Too many rules

• Specialized rules may quickly become outdated
• continuous updates and monitoring are expensive.

Once we have a strong baseline: We may think about Machine
Learning !

30

Limitations of Rule-Based Systems in NLP

• Static Rules
• Require updates
• bootstrapping methods (Gupta et al., 2014) can help evolve

rules.
• Multilingual Scalability

• Challenging for multiple languages
• combining with translation tools and embedding alignment

(Dou et al., 2016) can improve effectiveness.
• Too many rules

• Specialized rules may quickly become outdated
• continuous updates and monitoring are expensive.

Once we have a strong baseline: We may think about Machine
Learning !

30

Bag Of Words

Introduction to Bag of Words

• What is Bag of Words (BoW)?

• A simple and foundational text representation technique in
NLP.

• Represents text data as a ’bag’ (multiset) of words without
considering grammar or word order but keeping multiplicity.

• How does it work?

• Texts are converted into a fixed-length vector of numbers.
• Each unique word in the text corpus corresponds to a feature

(vector element).
• The frequency or presence of each word is then used to fill the

vector.

Note: BoW is often the first step in feature extraction for NLP
tasks.

31

Introduction to Bag of Words

• What is Bag of Words (BoW)?
• A simple and foundational text representation technique in

NLP.

• Represents text data as a ’bag’ (multiset) of words without
considering grammar or word order but keeping multiplicity.

• How does it work?

• Texts are converted into a fixed-length vector of numbers.
• Each unique word in the text corpus corresponds to a feature

(vector element).
• The frequency or presence of each word is then used to fill the

vector.

Note: BoW is often the first step in feature extraction for NLP
tasks.

31

Introduction to Bag of Words

• What is Bag of Words (BoW)?
• A simple and foundational text representation technique in

NLP.
• Represents text data as a ’bag’ (multiset) of words without

considering grammar or word order but keeping multiplicity.

• How does it work?

• Texts are converted into a fixed-length vector of numbers.
• Each unique word in the text corpus corresponds to a feature

(vector element).
• The frequency or presence of each word is then used to fill the

vector.

Note: BoW is often the first step in feature extraction for NLP
tasks.

31

Introduction to Bag of Words

• What is Bag of Words (BoW)?
• A simple and foundational text representation technique in

NLP.
• Represents text data as a ’bag’ (multiset) of words without

considering grammar or word order but keeping multiplicity.
• How does it work?

• Texts are converted into a fixed-length vector of numbers.
• Each unique word in the text corpus corresponds to a feature

(vector element).
• The frequency or presence of each word is then used to fill the

vector.

Note: BoW is often the first step in feature extraction for NLP
tasks.

31

Introduction to Bag of Words

• What is Bag of Words (BoW)?
• A simple and foundational text representation technique in

NLP.
• Represents text data as a ’bag’ (multiset) of words without

considering grammar or word order but keeping multiplicity.
• How does it work?

• Texts are converted into a fixed-length vector of numbers.

• Each unique word in the text corpus corresponds to a feature
(vector element).

• The frequency or presence of each word is then used to fill the
vector.

Note: BoW is often the first step in feature extraction for NLP
tasks.

31

Introduction to Bag of Words

• What is Bag of Words (BoW)?
• A simple and foundational text representation technique in

NLP.
• Represents text data as a ’bag’ (multiset) of words without

considering grammar or word order but keeping multiplicity.
• How does it work?

• Texts are converted into a fixed-length vector of numbers.
• Each unique word in the text corpus corresponds to a feature

(vector element).

• The frequency or presence of each word is then used to fill the
vector.

Note: BoW is often the first step in feature extraction for NLP
tasks.

31

Introduction to Bag of Words

• What is Bag of Words (BoW)?
• A simple and foundational text representation technique in

NLP.
• Represents text data as a ’bag’ (multiset) of words without

considering grammar or word order but keeping multiplicity.
• How does it work?

• Texts are converted into a fixed-length vector of numbers.
• Each unique word in the text corpus corresponds to a feature

(vector element).
• The frequency or presence of each word is then used to fill the

vector.

Note: BoW is often the first step in feature extraction for NLP
tasks.

31

Introduction to Bag of Words

• What is Bag of Words (BoW)?
• A simple and foundational text representation technique in

NLP.
• Represents text data as a ’bag’ (multiset) of words without

considering grammar or word order but keeping multiplicity.
• How does it work?

• Texts are converted into a fixed-length vector of numbers.
• Each unique word in the text corpus corresponds to a feature

(vector element).
• The frequency or presence of each word is then used to fill the

vector.

Note: BoW is often the first step in feature extraction for NLP
tasks.

31

Introduction to Bag of Words

• What is Bag of Words (BoW)?
• A simple and foundational text representation technique in

NLP.
• Represents text data as a ’bag’ (multiset) of words without

considering grammar or word order but keeping multiplicity.
• How does it work?

• Texts are converted into a fixed-length vector of numbers.
• Each unique word in the text corpus corresponds to a feature

(vector element).
• The frequency or presence of each word is then used to fill the

vector.

Note: BoW is often the first step in feature extraction for NLP
tasks.

31

Term Frequency in Bag of Words

• Term Frequency (TF)

• Definition: In the context of Bag of Words, Term Frequency
measures how frequently a term occurs in a document.

• Formal Representation:

• Let d be a document in a corpus D.
• Let w be a term (word) in document d .
• The term frequency TF (w , d) is calculated as:

TF (w , d) = Number of times word w appears in document d

• Significance in Bag of Words

• TF is a fundamental concept in converting text to numerical
format in BoW, representing the importance of each term in
the document.

• It’s a simple way to quantify and compare the occurrence of
terms across different documents in a corpus.

32

Term Frequency in Bag of Words

• Term Frequency (TF)
• Definition: In the context of Bag of Words, Term Frequency

measures how frequently a term occurs in a document.

• Formal Representation:

• Let d be a document in a corpus D.
• Let w be a term (word) in document d .
• The term frequency TF (w , d) is calculated as:

TF (w , d) = Number of times word w appears in document d

• Significance in Bag of Words

• TF is a fundamental concept in converting text to numerical
format in BoW, representing the importance of each term in
the document.

• It’s a simple way to quantify and compare the occurrence of
terms across different documents in a corpus.

32

Term Frequency in Bag of Words

• Term Frequency (TF)
• Definition: In the context of Bag of Words, Term Frequency

measures how frequently a term occurs in a document.
• Formal Representation:

• Let d be a document in a corpus D.
• Let w be a term (word) in document d .
• The term frequency TF (w , d) is calculated as:

TF (w , d) = Number of times word w appears in document d

• Significance in Bag of Words

• TF is a fundamental concept in converting text to numerical
format in BoW, representing the importance of each term in
the document.

• It’s a simple way to quantify and compare the occurrence of
terms across different documents in a corpus.

32

Term Frequency in Bag of Words

• Term Frequency (TF)
• Definition: In the context of Bag of Words, Term Frequency

measures how frequently a term occurs in a document.
• Formal Representation:

• Let d be a document in a corpus D.

• Let w be a term (word) in document d .
• The term frequency TF (w , d) is calculated as:

TF (w , d) = Number of times word w appears in document d

• Significance in Bag of Words

• TF is a fundamental concept in converting text to numerical
format in BoW, representing the importance of each term in
the document.

• It’s a simple way to quantify and compare the occurrence of
terms across different documents in a corpus.

32

Term Frequency in Bag of Words

• Term Frequency (TF)
• Definition: In the context of Bag of Words, Term Frequency

measures how frequently a term occurs in a document.
• Formal Representation:

• Let d be a document in a corpus D.
• Let w be a term (word) in document d .

• The term frequency TF (w , d) is calculated as:

TF (w , d) = Number of times word w appears in document d

• Significance in Bag of Words

• TF is a fundamental concept in converting text to numerical
format in BoW, representing the importance of each term in
the document.

• It’s a simple way to quantify and compare the occurrence of
terms across different documents in a corpus.

32

Term Frequency in Bag of Words

• Term Frequency (TF)
• Definition: In the context of Bag of Words, Term Frequency

measures how frequently a term occurs in a document.
• Formal Representation:

• Let d be a document in a corpus D.
• Let w be a term (word) in document d .
• The term frequency TF (w , d) is calculated as:

TF (w , d) = Number of times word w appears in document d

• Significance in Bag of Words

• TF is a fundamental concept in converting text to numerical
format in BoW, representing the importance of each term in
the document.

• It’s a simple way to quantify and compare the occurrence of
terms across different documents in a corpus.

32

Term Frequency in Bag of Words

• Term Frequency (TF)
• Definition: In the context of Bag of Words, Term Frequency

measures how frequently a term occurs in a document.
• Formal Representation:

• Let d be a document in a corpus D.
• Let w be a term (word) in document d .
• The term frequency TF (w , d) is calculated as:

TF (w , d) = Number of times word w appears in document d

• Significance in Bag of Words

• TF is a fundamental concept in converting text to numerical
format in BoW, representing the importance of each term in
the document.

• It’s a simple way to quantify and compare the occurrence of
terms across different documents in a corpus.

32

Term Frequency in Bag of Words

• Term Frequency (TF)
• Definition: In the context of Bag of Words, Term Frequency

measures how frequently a term occurs in a document.
• Formal Representation:

• Let d be a document in a corpus D.
• Let w be a term (word) in document d .
• The term frequency TF (w , d) is calculated as:

TF (w , d) = Number of times word w appears in document d

• Significance in Bag of Words
• TF is a fundamental concept in converting text to numerical

format in BoW, representing the importance of each term in
the document.

• It’s a simple way to quantify and compare the occurrence of
terms across different documents in a corpus.

32

Term Frequency in Bag of Words

• Term Frequency (TF)
• Definition: In the context of Bag of Words, Term Frequency

measures how frequently a term occurs in a document.
• Formal Representation:

• Let d be a document in a corpus D.
• Let w be a term (word) in document d .
• The term frequency TF (w , d) is calculated as:

TF (w , d) = Number of times word w appears in document d

• Significance in Bag of Words
• TF is a fundamental concept in converting text to numerical

format in BoW, representing the importance of each term in
the document.

• It’s a simple way to quantify and compare the occurrence of
terms across different documents in a corpus.

32

Term Frequency Bag of Words with Scikit-Learn

Generating a TF BoW Model

Using Python’s scikit-learn library to vectorize text data.

Python Code

from sklearn.feature_extraction.text import CountVectorizer

Example sentences
sentences = ["The quick brown fox jumps over the lazy dog",

"Never jump over the lazy dog quickly",
"The fox is quick and brown"]

Initialize CountVectorizer
vectorizer = CountVectorizer()

Fit and transform the sentences
BoW_matrix = vectorizer.fit_transform(sentences)
print(BoW_matrix.toarray())

33

Term Frequency Bag of Words with Scikit-Learn

Python Code, results

sentences = ["The quick brown fox jumps over the lazy dog",
"Never jump over the lazy dog quickly",
"The fox is quick and brown"]

Vocabulary: {’the’: 12, ’quick’: 10, ’brown’: 1, ’fox’: 3, ’jumps’: 6,
’over’: 9, ’lazy’: 7, ’dog’: 2, ’never’: 8, ’jump’: 5,
’quickly’: 11, ’is’: 4, ’and’: 0}

tf_matrix:[[0 1 1 1 0 0 1 1 0 1 1 0 2]
[0 0 1 0 0 1 0 1 1 1 0 1 1]
[1 1 0 1 1 0 0 0 0 0 1 0 1]]

• The output matrix represents the term frequencies of each word in
the sentences.

• Each column corresponds to a unique word in the combined
sentences.

• Rows represent each sentence’s word frequency vector. 34

Limitations of Term Frequency BoW

• Overemphasis on Frequent Words:

• Common words like ’the’ and ’is’ may appear frequently but
offer little value in understanding the unique context of each
document.

• Example: In our sentences, ’the’ and ’quick’ are frequent but
not necessarily informative.

• Ignoring Word Importance Across Documents:

• TF BoW counts words in each document independently, not
accounting for their importance or rarity across the entire
document set.

• Example: Words like ’fox’ and ’dog’, which might be key to
understanding the specific content, are treated the same as
common words.

35

Limitations of Term Frequency BoW

• Overemphasis on Frequent Words:
• Common words like ’the’ and ’is’ may appear frequently but

offer little value in understanding the unique context of each
document.

• Example: In our sentences, ’the’ and ’quick’ are frequent but
not necessarily informative.

• Ignoring Word Importance Across Documents:

• TF BoW counts words in each document independently, not
accounting for their importance or rarity across the entire
document set.

• Example: Words like ’fox’ and ’dog’, which might be key to
understanding the specific content, are treated the same as
common words.

35

Limitations of Term Frequency BoW

• Overemphasis on Frequent Words:
• Common words like ’the’ and ’is’ may appear frequently but

offer little value in understanding the unique context of each
document.

• Example: In our sentences, ’the’ and ’quick’ are frequent but
not necessarily informative.

• Ignoring Word Importance Across Documents:

• TF BoW counts words in each document independently, not
accounting for their importance or rarity across the entire
document set.

• Example: Words like ’fox’ and ’dog’, which might be key to
understanding the specific content, are treated the same as
common words.

35

Limitations of Term Frequency BoW

• Overemphasis on Frequent Words:
• Common words like ’the’ and ’is’ may appear frequently but

offer little value in understanding the unique context of each
document.

• Example: In our sentences, ’the’ and ’quick’ are frequent but
not necessarily informative.

• Ignoring Word Importance Across Documents:

• TF BoW counts words in each document independently, not
accounting for their importance or rarity across the entire
document set.

• Example: Words like ’fox’ and ’dog’, which might be key to
understanding the specific content, are treated the same as
common words.

35

Limitations of Term Frequency BoW

• Overemphasis on Frequent Words:
• Common words like ’the’ and ’is’ may appear frequently but

offer little value in understanding the unique context of each
document.

• Example: In our sentences, ’the’ and ’quick’ are frequent but
not necessarily informative.

• Ignoring Word Importance Across Documents:
• TF BoW counts words in each document independently, not

accounting for their importance or rarity across the entire
document set.

• Example: Words like ’fox’ and ’dog’, which might be key to
understanding the specific content, are treated the same as
common words.

35

Limitations of Term Frequency BoW

• Overemphasis on Frequent Words:
• Common words like ’the’ and ’is’ may appear frequently but

offer little value in understanding the unique context of each
document.

• Example: In our sentences, ’the’ and ’quick’ are frequent but
not necessarily informative.

• Ignoring Word Importance Across Documents:
• TF BoW counts words in each document independently, not

accounting for their importance or rarity across the entire
document set.

• Example: Words like ’fox’ and ’dog’, which might be key to
understanding the specific content, are treated the same as
common words.

35

Term Frequency-Inverse Document Frequency (TF-IDF)

• What is TF-IDF?
It enhances the basic TF by considering not only the
frequency of a word in a single document but also its
frequency across multiple documents.

• Formal Definition

• Let w be a word, d a document, and D the corpus of
documents.

• The TF-IDF value is calculated as:

TF-IDF(w , d , D) = TF (w , d) × IDF (w , D)

• Where IDF (w , D) (Inverse Document Frequency) is defined as:

IDF (w , D) = log
(

Total number of documents in D
Number of documents containing word w

)

36

Term Frequency-Inverse Document Frequency (TF-IDF)

• What is TF-IDF?
It enhances the basic TF by considering not only the
frequency of a word in a single document but also its
frequency across multiple documents.

• Formal Definition

• Let w be a word, d a document, and D the corpus of
documents.

• The TF-IDF value is calculated as:

TF-IDF(w , d , D) = TF (w , d) × IDF (w , D)

• Where IDF (w , D) (Inverse Document Frequency) is defined as:

IDF (w , D) = log
(

Total number of documents in D
Number of documents containing word w

)

36

Term Frequency-Inverse Document Frequency (TF-IDF)

• What is TF-IDF?
It enhances the basic TF by considering not only the
frequency of a word in a single document but also its
frequency across multiple documents.

• Formal Definition
• Let w be a word, d a document, and D the corpus of

documents.

• The TF-IDF value is calculated as:

TF-IDF(w , d , D) = TF (w , d) × IDF (w , D)

• Where IDF (w , D) (Inverse Document Frequency) is defined as:

IDF (w , D) = log
(

Total number of documents in D
Number of documents containing word w

)

36

Term Frequency-Inverse Document Frequency (TF-IDF)

• What is TF-IDF?
It enhances the basic TF by considering not only the
frequency of a word in a single document but also its
frequency across multiple documents.

• Formal Definition
• Let w be a word, d a document, and D the corpus of

documents.
• The TF-IDF value is calculated as:

TF-IDF(w , d , D) = TF (w , d) × IDF (w , D)

• Where IDF (w , D) (Inverse Document Frequency) is defined as:

IDF (w , D) = log
(

Total number of documents in D
Number of documents containing word w

)

36

Term Frequency-Inverse Document Frequency (TF-IDF)

• What is TF-IDF?
It enhances the basic TF by considering not only the
frequency of a word in a single document but also its
frequency across multiple documents.

• Formal Definition
• Let w be a word, d a document, and D the corpus of

documents.
• The TF-IDF value is calculated as:

TF-IDF(w , d , D) = TF (w , d) × IDF (w , D)

• Where IDF (w , D) (Inverse Document Frequency) is defined as:

IDF (w , D) = log
(

Total number of documents in D
Number of documents containing word w

)

36

Term Frequency-Inverse Document Frequency (TF-IDF)

Differences from TF BoW

• Word Significance: TF-IDF decreases the weight of words
that occur frequently across many documents (common
words), emphasizing words that are unique to specific
documents.

• Contextual Importance: Unlike TF, which treats all terms
equally, TF-IDF provides a way to assess the relevance of
terms in the context of the entire corpus.

TF-IDF is widely used in information retrieval and text mining to
reflect how important a word is to a document in a collection.

37

Term Frequency-Inverse Document Frequency (TF-IDF)

Differences from TF BoW

• Word Significance: TF-IDF decreases the weight of words
that occur frequently across many documents (common
words), emphasizing words that are unique to specific
documents.

• Contextual Importance: Unlike TF, which treats all terms
equally, TF-IDF provides a way to assess the relevance of
terms in the context of the entire corpus.

TF-IDF is widely used in information retrieval and text mining to
reflect how important a word is to a document in a collection.

37

Term Frequency-Inverse Document Frequency (TF-IDF)

Differences from TF BoW

• Word Significance: TF-IDF decreases the weight of words
that occur frequently across many documents (common
words), emphasizing words that are unique to specific
documents.

• Contextual Importance: Unlike TF, which treats all terms
equally, TF-IDF provides a way to assess the relevance of
terms in the context of the entire corpus.

TF-IDF is widely used in information retrieval and text mining to
reflect how important a word is to a document in a collection.

37

Term Frequency-Inverse Document Frequency (TF-IDF)

Differences from TF BoW

• Word Significance: TF-IDF decreases the weight of words
that occur frequently across many documents (common
words), emphasizing words that are unique to specific
documents.

• Contextual Importance: Unlike TF, which treats all terms
equally, TF-IDF provides a way to assess the relevance of
terms in the context of the entire corpus.

TF-IDF is widely used in information retrieval and text mining to
reflect how important a word is to a document in a collection.

37

TF-IDF with Scikit-Learn

Generating a TF-IDF Model

Using Python’s scikit-learn library to apply TF-IDF vectorization to data.

Python Code

from sklearn.feature_extraction.text import TfidfVectorizer

Example sentences
sentences = ["The quick brown fox jumps over the lazy dog",

"Never jump over the lazy dog quickly",
"The fox is quick and brown"]

Initialize TfidfVectorizer
vectorizer = TfidfVectorizer()

Fit and transform the sentences
tfidf_matrix = vectorizer.fit_transform(sentences)

Print the resulting matrix
print(tfidf_matrix.toarray())

38

TF-IDF with Scikit-Learn

Python Code, results

sentences = ["The quick brown fox jumps over the lazy dog",
"Never jump over the lazy dog quickly",
"The fox is quick and brown"]

Vocabulary: {’the’: 12, ’quick’: 10, ’brown’: 1, ’fox’: 3, ’jumps’: 6,
’over’: 9, ’lazy’: 7, ’dog’: 2, ’never’: 8, ’jump’: 5,
’quickly’: 11, ’is’: 4, ’and’: 0}

tf_matrix:[[0 1 1 1 0 0 1 1 0 1 1 0 2]
[0 0 1 0 0 1 0 1 1 1 0 1 1]
[1 1 0 1 1 0 0 0 0 0 1 0 1]]

tf_idf_matrix:
[[0. 0.3 0.3 0.3 0. 0. 0.4 0.3 0. 0.3 0.3 0. 0.5]
[0. 0. 0.3 0. 0. 0.4 0. 0.3 0.4 0.3 0. 0.4 0.3]
[0.5 0.4 0. 0.4 0.5 0. 0. 0. 0. 0. 0.4 0. 0.3]]

39

Limitations of TF-IDF and Motivation for BM25

• Term Saturation

• Overemphasis on frequent terms due to linear term frequency
assumption.

• E.g., ”space” dominates over ”exoplanets” in space-related
texts.

• Document Length Bias

• Favors longer documents, overlooking shorter content’s
relevance.

• E.g., ”Quantum computing” appears more relevant in longer
papers.

• Query-Document Mismatch

• Lacks specific tuning for matching queries with document
relevance.

• E.g., ”Python” ambiguously interpreted in diverse contexts.

Conclusion: TF-IDF’s simplistic approach leads to biased term
weighting.

40

Limitations of TF-IDF and Motivation for BM25

• Term Saturation
• Overemphasis on frequent terms due to linear term frequency

assumption.

• E.g., ”space” dominates over ”exoplanets” in space-related
texts.

• Document Length Bias

• Favors longer documents, overlooking shorter content’s
relevance.

• E.g., ”Quantum computing” appears more relevant in longer
papers.

• Query-Document Mismatch

• Lacks specific tuning for matching queries with document
relevance.

• E.g., ”Python” ambiguously interpreted in diverse contexts.

Conclusion: TF-IDF’s simplistic approach leads to biased term
weighting.

40

Limitations of TF-IDF and Motivation for BM25

• Term Saturation
• Overemphasis on frequent terms due to linear term frequency

assumption.
• E.g., ”space” dominates over ”exoplanets” in space-related

texts.

• Document Length Bias

• Favors longer documents, overlooking shorter content’s
relevance.

• E.g., ”Quantum computing” appears more relevant in longer
papers.

• Query-Document Mismatch

• Lacks specific tuning for matching queries with document
relevance.

• E.g., ”Python” ambiguously interpreted in diverse contexts.

Conclusion: TF-IDF’s simplistic approach leads to biased term
weighting.

40

Limitations of TF-IDF and Motivation for BM25

• Term Saturation
• Overemphasis on frequent terms due to linear term frequency

assumption.
• E.g., ”space” dominates over ”exoplanets” in space-related

texts.
• Document Length Bias

• Favors longer documents, overlooking shorter content’s
relevance.

• E.g., ”Quantum computing” appears more relevant in longer
papers.

• Query-Document Mismatch

• Lacks specific tuning for matching queries with document
relevance.

• E.g., ”Python” ambiguously interpreted in diverse contexts.

Conclusion: TF-IDF’s simplistic approach leads to biased term
weighting.

40

Limitations of TF-IDF and Motivation for BM25

• Term Saturation
• Overemphasis on frequent terms due to linear term frequency

assumption.
• E.g., ”space” dominates over ”exoplanets” in space-related

texts.
• Document Length Bias

• Favors longer documents, overlooking shorter content’s
relevance.

• E.g., ”Quantum computing” appears more relevant in longer
papers.

• Query-Document Mismatch

• Lacks specific tuning for matching queries with document
relevance.

• E.g., ”Python” ambiguously interpreted in diverse contexts.

Conclusion: TF-IDF’s simplistic approach leads to biased term
weighting.

40

Limitations of TF-IDF and Motivation for BM25

• Term Saturation
• Overemphasis on frequent terms due to linear term frequency

assumption.
• E.g., ”space” dominates over ”exoplanets” in space-related

texts.
• Document Length Bias

• Favors longer documents, overlooking shorter content’s
relevance.

• E.g., ”Quantum computing” appears more relevant in longer
papers.

• Query-Document Mismatch

• Lacks specific tuning for matching queries with document
relevance.

• E.g., ”Python” ambiguously interpreted in diverse contexts.

Conclusion: TF-IDF’s simplistic approach leads to biased term
weighting.

40

Limitations of TF-IDF and Motivation for BM25

• Term Saturation
• Overemphasis on frequent terms due to linear term frequency

assumption.
• E.g., ”space” dominates over ”exoplanets” in space-related

texts.
• Document Length Bias

• Favors longer documents, overlooking shorter content’s
relevance.

• E.g., ”Quantum computing” appears more relevant in longer
papers.

• Query-Document Mismatch

• Lacks specific tuning for matching queries with document
relevance.

• E.g., ”Python” ambiguously interpreted in diverse contexts.

Conclusion: TF-IDF’s simplistic approach leads to biased term
weighting.

40

Limitations of TF-IDF and Motivation for BM25

• Term Saturation
• Overemphasis on frequent terms due to linear term frequency

assumption.
• E.g., ”space” dominates over ”exoplanets” in space-related

texts.
• Document Length Bias

• Favors longer documents, overlooking shorter content’s
relevance.

• E.g., ”Quantum computing” appears more relevant in longer
papers.

• Query-Document Mismatch
• Lacks specific tuning for matching queries with document

relevance.

• E.g., ”Python” ambiguously interpreted in diverse contexts.

Conclusion: TF-IDF’s simplistic approach leads to biased term
weighting.

40

Limitations of TF-IDF and Motivation for BM25

• Term Saturation
• Overemphasis on frequent terms due to linear term frequency

assumption.
• E.g., ”space” dominates over ”exoplanets” in space-related

texts.
• Document Length Bias

• Favors longer documents, overlooking shorter content’s
relevance.

• E.g., ”Quantum computing” appears more relevant in longer
papers.

• Query-Document Mismatch
• Lacks specific tuning for matching queries with document

relevance.
• E.g., ”Python” ambiguously interpreted in diverse contexts.

Conclusion: TF-IDF’s simplistic approach leads to biased term
weighting.

40

Limitations of TF-IDF and Motivation for BM25

• Term Saturation
• Overemphasis on frequent terms due to linear term frequency

assumption.
• E.g., ”space” dominates over ”exoplanets” in space-related

texts.
• Document Length Bias

• Favors longer documents, overlooking shorter content’s
relevance.

• E.g., ”Quantum computing” appears more relevant in longer
papers.

• Query-Document Mismatch
• Lacks specific tuning for matching queries with document

relevance.
• E.g., ”Python” ambiguously interpreted in diverse contexts.

Conclusion: TF-IDF’s simplistic approach leads to biased term
weighting.

40

Limitations of TF-IDF and Motivation for BM25

• Term Saturation
• Overemphasis on frequent terms due to linear term frequency

assumption.
• E.g., ”space” dominates over ”exoplanets” in space-related

texts.
• Document Length Bias

• Favors longer documents, overlooking shorter content’s
relevance.

• E.g., ”Quantum computing” appears more relevant in longer
papers.

• Query-Document Mismatch
• Lacks specific tuning for matching queries with document

relevance.
• E.g., ”Python” ambiguously interpreted in diverse contexts.

Conclusion: TF-IDF’s simplistic approach leads to biased term
weighting.

40

BM25

• What is BM25?
It enhances TF-IDF balancing the term frequency with
document length and query-document relevance.

• Formal Definition

• Given a sentence W containing terms w1, w2, ..., wn, the BM25
score of a document d is:

Score(d , W) =
n∑

i=1
IDF (wi)×

tf (wi , d) × (k1 + 1)
tf (wi , D) + k1 × (1 − b + b × |d|

avgdl)

• Where tf (wi , d) is wi ’s frequency in d , |d | is the length of the
document, and avgdl is the average document length in the
corpus. k1 and b are free parameters, usually chosen
empirically.

• Where IDF (wi) = ln(N−n(wi)+0.5
n(wi)+0.5 + 1), N is the number of

documents and n(wi) the number of documents containing wi

41

BM25

• What is BM25?
It enhances TF-IDF balancing the term frequency with
document length and query-document relevance.

• Formal Definition

• Given a sentence W containing terms w1, w2, ..., wn, the BM25
score of a document d is:

Score(d , W) =
n∑

i=1
IDF (wi)×

tf (wi , d) × (k1 + 1)
tf (wi , D) + k1 × (1 − b + b × |d|

avgdl)

• Where tf (wi , d) is wi ’s frequency in d , |d | is the length of the
document, and avgdl is the average document length in the
corpus. k1 and b are free parameters, usually chosen
empirically.

• Where IDF (wi) = ln(N−n(wi)+0.5
n(wi)+0.5 + 1), N is the number of

documents and n(wi) the number of documents containing wi

41

BM25

• What is BM25?
It enhances TF-IDF balancing the term frequency with
document length and query-document relevance.

• Formal Definition
• Given a sentence W containing terms w1, w2, ..., wn, the BM25

score of a document d is:

Score(d , W) =
n∑

i=1
IDF (wi)×

tf (wi , d) × (k1 + 1)
tf (wi , D) + k1 × (1 − b + b × |d|

avgdl)

• Where tf (wi , d) is wi ’s frequency in d , |d | is the length of the
document, and avgdl is the average document length in the
corpus. k1 and b are free parameters, usually chosen
empirically.

• Where IDF (wi) = ln(N−n(wi)+0.5
n(wi)+0.5 + 1), N is the number of

documents and n(wi) the number of documents containing wi

41

BM25

• What is BM25?
It enhances TF-IDF balancing the term frequency with
document length and query-document relevance.

• Formal Definition
• Given a sentence W containing terms w1, w2, ..., wn, the BM25

score of a document d is:

Score(d , W) =
n∑

i=1
IDF (wi)×

tf (wi , d) × (k1 + 1)
tf (wi , D) + k1 × (1 − b + b × |d|

avgdl)

• Where tf (wi , d) is wi ’s frequency in d , |d | is the length of the
document, and avgdl is the average document length in the
corpus. k1 and b are free parameters, usually chosen
empirically.

• Where IDF (wi) = ln(N−n(wi)+0.5
n(wi)+0.5 + 1), N is the number of

documents and n(wi) the number of documents containing wi

41

BM25

• What is BM25?
It enhances TF-IDF balancing the term frequency with
document length and query-document relevance.

• Formal Definition
• Given a sentence W containing terms w1, w2, ..., wn, the BM25

score of a document d is:

Score(d , W) =
n∑

i=1
IDF (wi)×

tf (wi , d) × (k1 + 1)
tf (wi , D) + k1 × (1 − b + b × |d|

avgdl)

• Where tf (wi , d) is wi ’s frequency in d , |d | is the length of the
document, and avgdl is the average document length in the
corpus. k1 and b are free parameters, usually chosen
empirically.

• Where IDF (wi) = ln(N−n(wi)+0.5
n(wi)+0.5 + 1), N is the number of

documents and n(wi) the number of documents containing wi

41

Differences with TF-IDF

Key Differences Between BM25 and TF-IDF

• TF / (TF + k), the backbone of BM25
• Term saturation: now limited by 1. the higher k the lower it

reaches 1.
• Document length: let k depends on length of the document as

k =|d |/avgdl, the longer the document, the more it will
penalize the score. The value of b wgives the speed of the
growth.

• Document Length Normalization
• BM25 : k depends on length of the document as k =|d |/avgdl

Conclusion: BM25 addresses several key limitations of TF-IDF,
making it more suitable for modern information retrieval systems.

42

Illustrations of TF / (TF + k)

BM25 Formula

Score(d , W) =
n∑

i=1
IDF (wi) × f (wi , d) × (k1 + 1)

f (wi , D) + k1 × (1 − b + b × |d |
avgdl)

TF-IDF Formula

TF-IDF(w , d , D) = TF (w , d) × IDF (w , D)

Figure 1: Visual Representation of TF Concept

43

Illustrations of IDFs

BM25 Formula

IDF (wi) = ln(N − n(wi) + 0.5
n(wi) + 0.5 + 1)

TF-IDF Formula

IDF (w , D) = log
(Total number of documents in D

Number of documents containing word w

)

Figure 2: Visual Representation of IDF Concept

44

BM25 with Scikit-Learn

Generating a BM25 representation

Using Python’s scikit-learn library and some functions to compute BM25.

Python Code

from sklearn.feature_extraction.text import CountVectorizer

Example sentences
sentences = ["The quick brown fox jumps over the lazy dog",

"Never jump over the lazy dog quickly",
"The fox is quick and brown"]

Initialize CountVectorizer
vectorizer = CountVectorizer()

Fit and transform the sentences
tf_matrix = vectorizer.fit_transform(sentences)

45

BM25 with Scikit-Learn

from math import log
import numpy as np

def compute_idf(corpus):
N = len(corpus)
idf_dict = {}
for document in corpus:

for term in set(document.split()):
idf_dict[term] = idf_dict.get(term, 0) + 1

for term, count in idf_dict.items():
idf_dict[term] = log(N / float(count))

return idf_dict

def bm25(tf, idf, avgdl, dl, b=0.75, k1=1.5):
return idf * (tf * (k1 + 1))/(tf + k1 * (1 - b + b * (dl / avgdl)))

46

BM25 with Scikit-Learn

Calculate IDF
idf_dict = compute_idf(sentences)
avgdl = np.mean([len(doc.split()) for doc in sentences])

Calculate BM25
bm25_matrix = np.zeros((len(sentences), len(terms)))
for i, sentence in enumerate(sentences):

dl = len(sentence.split())
for j, term in enumerate(terms):

tf = X[i, j]
idf = idf_dict.get(term, 0)
bm25_matrix[i, j] = bm25(tf, idf, avgdl, dl)

47

BM25 with Scikit-Learn

Python Code, results

sentences = ["The quick brown fox jumps over the lazy dog",
"Never jump over the lazy dog quickly",
"The fox is quick and brown"]

Vocabulary: {’the’: 12, ’quick’: 10, ’brown’: 1, ’fox’: 3, ’jumps’: 6,
’over’: 9, ’lazy’: 7, ’dog’: 2, ’never’: 8, ’jump’: 5,
’quickly’: 11, ’is’: 4, ’and’: 0}

tf_idf_matrix:
[[0. 0.3 0.3 0.3 0. 0. 0.4 0.3 0. 0.3 0.3 0. 0.5]
[0. 0. 0.3 0. 0. 0.4 0. 0.3 0.4 0.3 0. 0.4 0.3]
[0.5 0.4 0. 0.4 0.5 0. 0. 0. 0. 0. 0.4 0. 0.3]]

bm25_matrix:
[[0. 0.4 0.4 0.4 0. 0. 1. 0.4 0. 0.4 0.4 0. 0.5]
[0. 0. 0.4 0. 0. 1.1 0. 0.4 0. 0.4 0. 1.1 0.4]
[1.2 0.4 0. 0.4 1.2 0. 0. 0. 0. 0. 0.4 0. 0.4]]

48

Limitations of TF-IDF

TF-IDF Limitations

• Term Frequency Bias: Overemphasizes words that appear
frequently, potentially overshadowing rare yet significant
terms.

• Document Length: Fails to normalize for document length,
potentially biasing towards longer documents.

• Lack of Context and Semantics: Treats each word
independently without considering context or word meanings.

49

Limitations of BM25

BM25 Limitations

• Parameter Sensitivity: The effectiveness of BM25 depends
on the tuning of its parameters k1 and b, which may not be
straightforward.

• Still Context-Agnostic: Like TF-IDF, BM25 does not
account for word order, semantics, or the overall context of
the query or document.

• Complexity in Large Scale Applications: Computationally
more complex than TF-IDF, especially for very large
document collections.

Note: Both methods, while foundational in information retrieval,
have been partly superseded by more advanced NLP techniques
that better understand context and semantics, like word
embeddings and neural network models. 50

QA

Open Discussion

• Feel free to ask questions or share your thoughts about
today’s topics.

• Any insights, experiences, or perspectives you’d like to discuss
are welcome.

51

Summary of Key Takeaways

• Metrics and Evaluation: Discussed various metrics and
evaluation strategies to judge model quality.

• Baselines in NLP: Emphasized the importance of
establishing baselines for comparison and model assessment.

• Term Frequency’s Role: Understood its significance in text
representation and limitations in context and semantics.

• TF-IDF and BM25: Explored their concepts, applications,
and limitations.

• BM25’s Advantages: Improved handling of term frequency
and document length, but with its own set of challenges.

• Evolving Landscape of NLP: Recognized advancements
beyond TF-IDF and BM25 towards more context-aware and
semantic approaches in NLP.

52

	Today's Class
	Introduction
	Our Program
	Where to Find Course Materials
	Leveraging LLMs and Higher-Level Thinking
	Today's class
	Evaluation of models
	Baselines: The Best Tool to Explore from Intuition
	Bag Of Words

